Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

5: System of Equations

( \newcommand{\kernel}{\mathrm{null}\,}\)

Learning Objectives

After reading this chapter, you should be able to:

  1. setup simultaneous linear equations in matrix form and vice-versa,
  2. understand the concept of the inverse of a matrix,
  3. know the difference between a consistent and inconsistent system of linear equations, and
  4. learn that a system of linear equations can have a unique solution, no solution or infinite solutions.

Matrix algebra is used for solving systems of equations. Can you illustrate this concept?

Matrix algebra is used to solve a system of simultaneous linear equations. In fact, for many mathematical procedures such as the solution to a set of nonlinear equations, interpolation, integration, and differential equations, the solutions reduce to a set of simultaneous linear equations. Let us illustrate with an example for interpolation.

Example 1

The upward velocity of a rocket is given at three different times on the following table.

Table 5.1. Velocity vs. time data for a rocket
Time, t Velocity, v
(s ) (m/s)
5 106.8
8 177.2
12 279.2

The velocity data is approximated by a polynomial as

v\left( t \right) = at^{2} + {bt} + c,5 \leq t \leq 12 \nonumber

Set up the equations in matrix form to find the coefficients a,b,c of the velocity profile.

Solution

The polynomial is going through three data points \left( t_{1},v_{1} \right),\left( t_{2},v_{2} \right),and\left( t_{3},v_{3} \right) where from table 5.1.

t_{1} = 5,\ v_{1} = 106.8 \nonumber

t_{2} = 8,\ v_{2} = 177.2 \nonumber

t_{3} = 12,\ v_{3} = 279.2 \nonumber

Requiring that v\left( t \right) = at^{2} + {bt} + c passes through the three data points gives

v\left( t_{1} \right) = v_{1} = at_{1}^{2} + bt_{1} + c \nonumber

v\left( t_{2} \right) = v_{2} = at_{2}^{2} + bt_{2} + c \nonumber

v\left( t_{3} \right) = v_{3} = at_{3}^{2} + bt_{3} + c \nonumber

Substituting the data \left( t_{1},v_{1} \right),\left( t_{2},v_{2} \right),\ and\ \left( t_{3},v_{3} \right) gives

a\left( 5^{2} \right) + b\left( 5 \right) + c = 106.8 \nonumber

a\left( 8^{2} \right) + b\left( 8 \right) + c = 177.2 \nonumber

a\left( 12^{2} \right) + b\left( 12 \right) + c = 279.2 \nonumber

or

25a + 5b + c = 106.8 \nonumber

64a + 8b + c = 177.2 \nonumber

144a + 12b + c = 279.2 \nonumber

This set of equations can be rewritten in the matrix form as

\begin{bmatrix} 25a + & 5b + & c \\ 64a + & 8b + & c \\ 144a + & 12b + & c \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

The above equation can be written as a linear combination as follows

a\begin{bmatrix} 25 \\ 64 \\ 144 \\ \end{bmatrix} + b\begin{bmatrix} 5 \\ 8 \\ 12 \\ \end{bmatrix} + c\begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

and further using matrix multiplication gives

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

The above is an illustration of why matrix algebra is needed. The complete solution to the set of equations is given later in this chapter.

A general set of m linear equations and n unknowns,

a_{11}x_{1} + a_{12}x_{2} + \cdots\cdots + a_{1n}x_{n} = c_{1} \nonumber

a_{21}x_{1} + a_{22}x_{2} + \cdots\cdots + a_{2n}x_{n} = c_{2} \nonumber

\text{..........................................} \nonumber

\text{..........................................} \nonumber

a_{m1}x_{1} + a_{m2}x_{2} + ........ + a_{mn}x_{n} = c_{m} \nonumber

can be rewritten in the matrix form as

\begin{bmatrix} a_{11} & a_{12} & . & . & a_{1n} \\ a_{21} & a_{22} & . & . & a_{2n} \\ \vdots & & & & \vdots \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & . & . & a_{mn} \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ x_{n} \\ \end{bmatrix} = \begin{bmatrix} c_{1} \\ c_{2} \\ \cdot \\ \cdot \\ c_{m} \\ \end{bmatrix} \nonumber

Denoting the matrices by \left\lbrack A \right\rbrack, \left\lbrack X \right\rbrack, and \left\lbrack C \right\rbrack, the system of equation is

\left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack, where \left\lbrack A \right\rbrack is called the coefficient matrix, \left\lbrack C \right\rbrack is called the right hand side vector and \left\lbrack X \right\rbrack is called the solution vector.

Sometimes \left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack systems of equations are written in the augmented form. That is

\left\lbrack A \ \vdots \ C \right\rbrack = \left\lbrack \begin{matrix} a_{11} & a_{12} & {......} & a_{1n} \\ a_{21} & a_{22} & {......} & a_{2n} \\ \begin{matrix} \vdots \\ \vdots \\ \end{matrix} & \begin{matrix} \\ \\ \end{matrix} & \begin{matrix} \\ \\ \end{matrix} & \begin{matrix} \\ \\ \end{matrix} \\ a_{m1} & a_{m2} & {......} & a_{mn} \\ \end{matrix}\begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{matrix}\begin{matrix} c_{1} \\ c_{2} \\ \\ \\ c_{n} \\ \end{matrix} \right\rbrack \nonumber

A system of equations can be consistent or inconsistent. What does that mean?

A system of equations \left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack is consistent if there is a solution, and it is inconsistent if there is no solution. However, a consistent system of equations does not mean a unique solution, that is, a consistent system of equations may have a unique solution or infinite solutions (Figure 1).

image1.png
Figure \PageIndex{1}: Consistent and inconsistent system of equations flow chart.
Example 2

Give examples of consistent and inconsistent system of equations.

Solution
  1. The system of equations

\begin{bmatrix} 2 & 4 \\ 1 & 3 \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ \end{bmatrix} \nonumber

is a consistent system of equations as it has a unique solution, that is,

\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} \nonumber

  1. The system of equations

\begin{bmatrix} 2 & 4 \\ 1 & 2 \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ \end{bmatrix} \nonumber

is also a consistent system of equations but it has infinite solutions as given as follows.

Expanding the above set of equations,

2x + 4y = 6 \nonumber

x + 2y = 3 \nonumber

you can see that they are the same equation. Hence, any combination of \left( x,y \right) that satisfies

2x + 4y = 6 \nonumber

is a solution. For example \left( x,y \right) = \left( 1,1 \right) is a solution. Other solutions include \left( x,y \right) = (0.5,1.25), \left( x,y \right) = (0,1.5), and so on.

  1. The system of equations

\begin{bmatrix} 2 & 4 \\ 1 & 2 \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ \end{bmatrix} \nonumber

is inconsistent as no solution exists.

How can one distinguish between a consistent and inconsistent system of equations?

A system of equations \left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack is consistent if the rank of A is equal to the rank of the augmented matrix \left\lbrack A \ \vdots \ C \right\rbrack

A system of equations \left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack is inconsistent if the rank of A is less than the rank of the augmented matrix \left\lbrack A \ \vdots \ C \right\rbrack.

But, what do you mean by rank of a matrix?

The rank of a matrix is defined as the order of the largest square submatrix whose determinant is not zero.

Example 3

What is the rank of

\left\lbrack A \right\rbrack = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 0 & 5 \\ 1 & 2 & 3 \\ \end{bmatrix}?

Solution

The largest square submatrix possible is of order 3 and that is \lbrack A\rbrack itself. Since det(A) = - 23 \neq 0, the rank of \lbrack A\rbrack = 3.

Example 4

What is the rank of

\left\lbrack A \right\rbrack = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 0 & 5 \\ 5 & 1 & 7 \\ \end{bmatrix}? \nonumber

Solution

The largest square submatrix of \lbrack A\rbrack is of order 3 and that is \lbrack A\rbrack itself. Since det(A) = 0, the rank of \lbrack A\rbrack is less than 3. The next largest square submatrix would be a 2 \times2 matrix. One of the square submatrices of \lbrack A\rbrack is

\left\lbrack B \right\rbrack = \begin{bmatrix} 3 & 1 \\ 2 & 0 \\ \end{bmatrix} \nonumber

and det(B) = - 2 \neq 0. Hence the rank of \lbrack A\rbrack is 2. There is no need to look at other 2 \times 2 submatrices to establish that the rank of \lbrack A\rbrack is 2.

Example 5

How do I now use the concept of rank to find if

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

is a consistent or inconsistent system of equations?

Solution

The coefficient matrix is

\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber

and the right-hand side vector is

\left\lbrack C \right\rbrack = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

The augmented matrix is

\left\lbrack B \right\rbrack = \begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \\ \end{bmatrix} \nonumber

Since there are no square submatrices of order 4 as \lbrack B\rbrack is a 3 \times 3 matrix, the rank of \lbrack B\rbrack is at most 3. So let us look at the square submatrices of \lbrack B\rbrack of order 3; if any of these square submatrices have determinant not equal to zero, then the rank is 3. For example, a submatrix of the augmented matrix \lbrack B\rbrack is

\lbrack D\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber

hasdet(D) = - 84 \neq 0.

Hence the rank of the augmented matrix \lbrack B\rbrack is 3. Since \lbrack A\rbrack = \lbrack D\rbrack, the rank of \lbrack A\rbrack is 3. Since the rank of the augmented matrix \lbrack B\rbrack equals the rank of the coefficient matrix \lbrack A\rbrack, the system of equations is consistent.

Example 6

Use the concept of rank of matrix to find if

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 284.0 \\ \end{bmatrix} \nonumber

is consistent or inconsistent?

Solution

The coefficient matrix is given by

\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix} \nonumber

and the right-hand side

\left\lbrack C \right\rbrack = \begin{bmatrix} 106.8 \\ 177.2 \\ 284.0 \\ \end{bmatrix} \nonumber

The augmented matrix is

\left\lbrack B \right\rbrack = \begin{bmatrix} 25 & 5 & 1 & :106.8 \\ 64 & 8 & 1 & :177.2 \\ 89 & 13 & 2 & :284.0 \\ \end{bmatrix} \nonumber

Since there are no square submatrices of order 4 as \lbrack B\rbrack is a 4 \times 3 matrix, the rank of the augmented \lbrack B\rbrack is at most 3. So let us look at square submatrices of the augmented matrix \lbrack B\rbrack of order 3 and see if any of these have determinants not equal to zero. For example, a square submatrix of the augmented matrix \lbrack B\rbrack is

\left\lbrack D \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix} \nonumber

has det(D) = 0. This means, we need to explore other square submatrices of order 3 of the augmented matrix \lbrack B\rbrack and find their determinants.

That is,

\left\lbrack E \right\rbrack = \begin{bmatrix} 5 & 1 & 106.8 \\ 8 & 1 & 177.2 \\ 13 & 2 & 284.0 \\ \end{bmatrix} \nonumber

det(E) = 0 \nonumber

\left\lbrack F \right\rbrack = \begin{bmatrix} 25 & 5 & 106.8 \\ 64 & 8 & 177.2 \\ 89 & 13 & 284.0 \\ \end{bmatrix} \nonumber

det(F) = 0 \nonumber

\left\lbrack G \right\rbrack = \begin{bmatrix} 25 & 1 & 106.8 \\ 64 & 1 & 177.2 \\ 89 & 2 & 284.0 \\ \end{bmatrix} \nonumber

det(G) = 0 \nonumber

All the square submatrices of order 3 \times 3 of the augmented matrix \lbrack B\rbrack have a zero determinant. So the rank of the augmented matrix \lbrack B\rbrack is less than 3. Is the rank of augmented matrix \lbrack B\rbrack equal to 2?. One of the 2 \times 2 submatrices of the augmented matrix \lbrack B\rbrack is

\left\lbrack H \right\rbrack = \begin{bmatrix} 25 & 5 \\ 64 & 8 \\ \end{bmatrix} \nonumber

and

det(H) = - 120 \neq 0 \nonumber

So, the rank of the augmented matrix \lbrack B\rbrack is 2.

Now we need to find the rank of the coefficient matrix \lbrack B\rbrack.

\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix} \nonumber

and

det(A) = 0 \nonumber

So, the rank of the coefficient matrix \lbrack A\rbrack is less than 3. A square submatrix of the coefficient matrix \lbrack A\rbrack is

\left\lbrack J \right\rbrack = \begin{bmatrix} 5 & 1 \\ 8 & 1 \\ \end{bmatrix} \nonumber

det(J) = - 3 \neq 0 \nonumber

So, the rank of the coefficient matrix \lbrack A\rbrack is 2.

Hence, rank of the coefficient matrix \lbrack A\rbrack equals the rank of the augmented matrix [B]. So the system of equations \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack is consistent.

Example 7

Use the concept of rank to find if

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 280.0 \\ \end{bmatrix} \nonumber

is consistent or inconsistent.

Solution

The augmented matrix is

\left\lbrack B \right\rbrack = \begin{bmatrix} 25 & 5 & 1 & :106.8 \\ 64 & 8 & 1 & :177.2 \\ 89 & 13 & 2 & :280.0 \\ \end{bmatrix} \nonumber

Since there are no square submatrices of order 4 \times 4 as the augmented matrix \lbrack B\rbrack is a 4 \times 3 matrix, the rank of the augmented matrix \lbrack B\rbrack is at most 3. So let us look at square submatrices of the augmented matrix (B) of order 3 and see if any of the 3 \times 3 submatrices have a determinant not equal to zero. For example, a square submatrix of order 3 \times 3 of \lbrack B\rbrack

\left\lbrack D \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix} \nonumber

\det(D)\ = \ 0 \nonumber

So, it means, we need to explore other square submatrices of the augmented matrix \lbrack B\rbrack

\left\lbrack E \right\rbrack = \begin{bmatrix} 5 & 1 & 106.8 \\ 8 & 1 & 177.2 \\ 13 & 2 & 280.0 \\ \end{bmatrix} \nonumber

det(E) = 12.0 \neq 0.

So, the rank of the augmented matrix \lbrack B\rbrack is 3.

The rank of the coefficient matrix \lbrack A\rbrack is 2 from the previous example.

Since the rank of the coefficient matrix \lbrack A\rbrack is less than the rank of the augmented matrix \lbrack B\rbrack, the system of equations is inconsistent. Hence, no solution exists for \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack.

If a solution exists, how do we know whether it is unique?

In a system of equations \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack that is consistent, the rank of the coefficient matrix \lbrack A\rbrack is the same as the augmented matrix \lbrack A\left| C \right.\ \rbrack. If in addition, the rank of the coefficient matrix \lbrack A\rbrack is same as the number of unknowns, then the solution is unique; if the rank of the coefficient matrix \lbrack A\rbrack is less than the number of unknowns, then infinite solutions exist.

image2.jpg
Figure \PageIndex{2}: Flow chart of conditions for consistent and inconsistent system of equations.
Example 8

We found that the following system of equations

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

is a consistent system of equations. Does the system of equations have a unique solution or does it have infinite solutions?

Solution

The coefficient matrix is

\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber

and the right-hand side is

\left\lbrack C \right\rbrack = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

While finding out whether the above equations were consistent in an earlier example, we found that the rank of the coefficient matrix (A) equals rank of augmented matrix \left\lbrack A \ \vdots \ C \right\rbrack equals 3.

The solution is unique as the number of unknowns = 3 = rank of (A).

Example 9

We found that the following system of equations

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 284.0 \\ \end{bmatrix} \nonumber

is a consistent system of equations. Is the solution unique or does it have infinite solutions.

Solution

While finding out whether the above equations were consistent, we found that the rank of the coefficient matrix \lbrack A\rbrackequals the rank of augmented matrix \left( A \ \vdots\ C \right) equals 2

Since the rank of \lbrack A\rbrack = 2 < number of unknowns = 3, infinite solutions exist.

If we have more equations than unknowns in [A] [X] = [C], does it mean the system is inconsistent?

No, it depends on the rank of the augmented matrix \left\lbrack A\ \vdots \ C \right\rbrack and the rank of \lbrack A\rbrack.

  1. For example

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ 284.0 \\ \end{bmatrix} \nonumber

is consistent, since

  • rank of augmented matrix = 3
  • rank of coefficient matrix = 3

Now since the rank of (A) = 3 = number of unknowns, the solution is not only consistent but also unique.

  1. For example

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ 280.0 \\ \end{bmatrix} \nonumber

is inconsistent, since

  • rank of augmented matrix = 4
  • rank of coefficient matrix = 3
  1. For example

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 50 & 10 & 2 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 213.6 \\ 280.0 \\ \end{bmatrix} \nonumber

is consistent, since

  • rank of augmented matrix = 2
  • rank of coefficient matrix = 2

But since the rank of \lbrack A\rbrack = 2 < the number of unknowns = 3, infinite solutions exist.

Consistent systems of equations can only have a unique solution or infinite solutions. Can a system of equations have more than one but not infinite number of solutions?

No, you can only have either a unique solution or infinite solutions. Let us suppose \lbrack A\rbrack\lbrack X\rbrack = \lbrack C\rbrackhas two solutions \lbrack Y\rbrack and \lbrack Z\rbrack so that

\lbrack A\rbrack\lbrack Y\rbrack = \lbrack C\rbrack \nonumber

\lbrack A\rbrack\lbrack Z\rbrack = \lbrack C\rbrack \nonumber

If r is a constant, then from the two equations

r\left\lbrack A \right\rbrack\left\lbrack Y \right\rbrack = r\left\lbrack C \right\rbrack \nonumber

\left( 1 - r \right)\left\lbrack A \right\rbrack\left\lbrack Z \right\rbrack = \left( 1 - r \right)\left\lbrack C \right\rbrack \nonumber

Adding the above two equations gives

r\left\lbrack A \right\rbrack\left\lbrack Y \right\rbrack + \left( 1 - r \right)\left\lbrack A \right\rbrack\left\lbrack Z \right\rbrack = r\left\lbrack C \right\rbrack + \left( 1 - r \right)\left\lbrack C \right\rbrack \nonumber

\left\lbrack A \right\rbrack\left( r\left\lbrack Y \right\rbrack + \left( 1 - r \right)\left\lbrack Z \right\rbrack \right) = \left\lbrack C \right\rbrack \nonumber

Hence

r\left\lbrack Y \right\rbrack + \left( 1 - r \right)\left\lbrack Z \right\rbrack \nonumber

is a solution to

\left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack \nonumber

Since r is any scalar, there are infinite solutions for \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack of the form

r\left\lbrack Y \right\rbrack + \left( 1 - r \right)\left\lbrack Z \right\rbrack \nonumber

Can you divide two matrices?

If \lbrack A\rbrack\ \lbrack B\rbrack = \lbrack C\rbrack is defined, it might seem intuitive that \lbrack A\rbrack = \frac{\left\lbrack C \right\rbrack}{\left\lbrack B \right\rbrack}, but matrix division is not defined like that. However an inverse of a matrix can be defined for certain types of square matrices. The inverse of a square matrix \lbrack A\rbrack, if existing, is denoted by \lbrack A\rbrack^{- 1} such that

\lbrack A\rbrack\ \lbrack A\rbrack^{- 1} = \lbrack I\rbrack = \lbrack A\rbrack^{- 1}\lbrack A\rbrack \nonumber

Where \lbrack I\rbrack is the identity matrix.

In other words, let [A] be a square matrix. If \lbrack B\rbrack is another square matrix of the same size such that \lbrack B\rbrack\ \lbrack A\rbrack = \lbrack I\rbrack, then \lbrack B\rbrack is the inverse of \lbrack A\rbrack. \lbrack A\rbrack is then called to be invertible or nonsingular. If \lbrack A\rbrack^{- 1} does not exist, \lbrack A\rbrack is called noninvertible or singular.

If \lbrack A\rbrack and \lbrack B\rbrack are two n \times n matrices such that \lbrack B\rbrack\ \lbrack A\rbrack = \lbrack I\rbrack, then these statements are also true

[B] is the inverse of [A]

[A] is the inverse of [B]

[A] and [B] are both invertible

[A] [B]=[I].

[A] and [B] are both nonsingular

all columns of [A] and [B] are linearly independent

all rows of [A] and [B] are linearly independent.

Example 10

Determine if

\lbrack B\rbrack = \begin{bmatrix} 3 & 2 \\ 5 & 3 \\ \end{bmatrix}\ \nonumber

is the inverse of

\lbrack A\rbrack = \begin{bmatrix} - 3 & 2 \\ 5 & - 3 \\ \end{bmatrix} \nonumber

Solution

\begin{split} \lbrack B\rbrack\lbrack A\rbrack &= \ \ \begin{bmatrix} 3 & 2 \\ 5 & 3 \\ \end{bmatrix}\begin{bmatrix} - 3 & 2 \\ 5 & - 3 \\ \end{bmatrix}\\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}\\ &= \lbrack I\rbrack \end{split} \nonumber

Since

\ \left\lbrack B \right\rbrack\left\lbrack A \right\rbrack = \left\lbrack I \right\rbrack, \nonumber

\lbrack B\rbrack is the inverse of [A] and \lbrack A\rbrack is the inverse of \lbrack B\rbrack.

But, we can also show that

\begin{split} \lbrack A\rbrack\lbrack B\rbrack &= \begin{bmatrix} - 3 & 2 \\ 5 & - 3 \\ \end{bmatrix}\begin{bmatrix} 3 & 2 \\ 5 & 3 \\ \end{bmatrix}\\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}\\ &= \lbrack I\rbrack \end{split} \nonumber

to show that \lbrack A\rbrack is the inverse of \lbrack B\rbrack.

Can I use the concept of the inverse of a matrix to find the solution of a set of equations [A] [X] = [C]?

Yes, if the number of equations is the same as the number of unknowns, the coefficient matrix \lbrack A\rbrack is a square matrix.

Given

\lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack \nonumber

Then, if \lbrack A\rbrack^{- 1} exists, multiplying both sides by \lbrack A\rbrack^{- 1}.

\lbrack A\rbrack^{- 1}\lbrack A\rbrack\lbrack X\rbrack = \lbrack A\rbrack^{- 1}\lbrack C\rbrack \nonumber

\lbrack I\rbrack\ \lbrack X\rbrack = \lbrack A\rbrack^{- 1}\lbrack C\rbrack \nonumber

\lbrack X\rbrack = \lbrack A\rbrack^{- 1}\lbrack C\rbrack \nonumber

This implies that if we are able to find \lbrack A\rbrack^{- 1}, the solution vector of \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack is simply a multiplication of \lbrack A\rbrack^{- 1} and the right hand side vector, \lbrack C\rbrack.

How do I find the inverse of a matrix?

If \lbrack A\rbrack is a n \times n matrix, then \lbrack A\rbrack^{- 1} is a n \times n matrix and according to the definition of inverse of a matrix

\lbrack A\rbrack\ \lbrack A\rbrack^{- 1} = \lbrack I\rbrack \nonumber

Denoting

\lbrack A\rbrack = \begin{bmatrix} a_{11} & a_{12} & \cdot & \cdot & a_{1n} \\ a_{21} & a_{22} & \cdot & \cdot & a_{2n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{n1} & a_{n2} & \cdot & \cdot & a_{nn} \\ \end{bmatrix} \nonumber

\lbrack A\rbrack^{- 1} = \begin{bmatrix} a_{11}^{'} & a_{12}^{'} & \cdot & \cdot & a_{1n}^{'} \\ a_{21}^{'} & a_{22}^{'} & \cdot & \cdot & a_{2n}^{'} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{n1}^{'} & a_{n2}^{'} & \cdot & \cdot & a_{nn}^{'} \\ \end{bmatrix} \nonumber

\lbrack I\rbrack = \begin{bmatrix} 1 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & 1 & & & & 0 \\ 0 & & \cdot & & & \cdot \\ \cdot & & & 1 & & \cdot \\ \cdot & & & & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \cdot & 1 \\ \end{bmatrix} \nonumber

Using the definition of matrix multiplication, the first column of the \lbrack A\rbrack^{- 1} matrix can then be found by solving

\begin{bmatrix} a_{11} & a_{12} & \cdot & \cdot & a_{1n} \\ a_{21} & a_{22} & \cdot & \cdot & a_{2n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{n1} & a_{n2} & \cdot & \cdot & a_{nn} \\ \end{bmatrix}\begin{bmatrix} a_{11}^{'} \\ a_{21}^{'} \\ \cdot \\ \cdot \\ a_{n1}^{'} \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \cdot \\ \cdot \\ 0 \\ \end{bmatrix} \nonumber

Similarly, one can find the other columns of the \lbrack A\rbrack^{- 1} matrix by changing the right hand side accordingly.

Example 11

The upward velocity of the rocket is given by

Table 5.2. Velocity vs time data for a rocket
Time, t (s) Velocity, v (m/s)
5 106.8
8 177.2
12 279.2

In an earlier example, we wanted to approximate the velocity profile by

v\left( t \right) = at^{2} + {bt} + c,5 \leq t \leq 12 \nonumber

We found that the coefficients a,\ b,\ and\ c in v\left( t \right) are given by

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

First, find the inverse of

\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber

and then use the definition of inverse to find the coefficients a,\ b,\ and\ c.

Solution

If

\left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} a_{11}^{'} & a_{12}^{'} & a_{13}^{'} \\ a_{21}^{'} & a_{22}^{'} & a_{23}^{'} \\ a_{31}^{'} & a_{32}^{'} & a_{33}^{'} \\ \end{bmatrix} \nonumber

is the inverse of \lbrack A\rbrack, then

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a_{11}^{'} & a_{12}^{'} & a_{13}^{'} \\ a_{21}^{'} & a_{22}^{'} & a_{23}^{'} \\ a_{31}^{'} & a_{32}^{'} & a_{33}^{'} \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \nonumber

gives three sets of equations

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a_{11}^{'} \\ a_{21}^{'} \\ a_{31}^{'} \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix} \nonumber

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a_{12}^{'} \\ a_{22}^{'} \\ a_{32}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \end{bmatrix} \nonumber

\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a_{13}^{'} \\ a_{23}^{'} \\ a_{33}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \end{bmatrix} \nonumber

Solving the above three sets of equations separately gives

\begin{bmatrix} a_{11}^{'} \\ a_{21}^{'} \\ a_{31}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0.04762 \\ - 0.9524 \\ 4.571 \\ \end{bmatrix} \nonumber

\begin{bmatrix} a_{12}^{'} \\ a_{22}^{'} \\ a_{32}^{'} \\ \end{bmatrix} = \begin{bmatrix} - 0.08333 \\ 1.417 \\ - 5.000 \\ \end{bmatrix} \nonumber

\begin{bmatrix} a_{13}^{'} \\ a_{23}^{'} \\ a_{33}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0.03571 \\ - 0.4643 \\ 1.429 \\ \end{bmatrix} \nonumber

Hence

\lbrack A\rbrack^{- 1} = \begin{bmatrix} 0.04762 & - 0.08333 & 0.03571 \\ - 0.9524 & 1.417 & - 0.4643 \\ 4.571 & - 5.000 & 1.429 \\ \end{bmatrix} \nonumber

Now

\left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack \nonumber

where

\left\lbrack X \right\rbrack = \begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} \nonumber

\left\lbrack C \right\rbrack = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

Using the definition of \left\lbrack A \right\rbrack^{- 1},

\left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack \nonumber

\left\lbrack X \right\rbrack = \left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack \nonumber

\begin{bmatrix} 0.04762 & - 0.08333 & 0.03571 \\ - 0.9524 & 1.417 & - 0.4643 \\ 4.571 & - 5.000 & 1.429 \\ \end{bmatrix}\begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber

Hence

\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 0.2905 \\ 19.69 \\ 1.086 \\ \end{bmatrix} \nonumber

So

v\left( t \right) = 0.2905t^{2} + 19.69t + 1.086,5 \leq t \leq 12 \nonumber

Is there another way to find the inverse of a matrix?

For finding the inverse of small matrices, the inverse of an invertible matrix can be found by

\left\lbrack A \right\rbrack^{- 1} = \frac{1}{\det\left( A \right)}{adj}\left( A \right) \nonumber

where

{adj}\left( A \right) = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & & C_{2n} \\ \vdots & & & \\ C_{n1} & C_{n2} & \cdots & C_{nn} \\ \end{bmatrix}^{T} \nonumber

where C_{ij} are the cofactors of a_{ij}. The matrix

\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & & & \vdots \\ C_{n1} & \cdots & \cdots & C_{nn} \\ \end{bmatrix} \nonumber

itself is called the matrix of cofactors from [A]. Cofactors are defined in Chapter 4.

Example 12

Find the inverse of

\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber

Solution

From Example 4.6 in Chapter 04.06, we found

\det\left( A \right) = - 84 \nonumber

Next we need to find the adjoint of \lbrack A\rbrack. The cofactors of A are found as follows.

The minor of entry a_{11} is

\begin{split} M_{11} &= \left| \begin{matrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{matrix} \right|\\ &= \left| \begin{matrix} 8 & 1 \\ 12 & 1 \\ \end{matrix} \right|\\ &= - 4 \end{split} \nonumber

The cofactors of entry a_{11} is

\begin{split} C_{11} &= \left( - 1 \right)^{1 + 1}M_{11}\\ &= M_{11}\\ &= - 4 \end{split} \nonumber

The minor of entry a_{12} is

\begin{split} M_{12} &= \left| \begin{matrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{matrix} \right|\\ &= \left| \begin{matrix} 64 & 1 \\ 144 & 1 \\ \end{matrix} \right|\\ &= - 80 \end{split} \nonumber

The cofactor of entry a_{12} is

\begin{split} C_{12} &= \left( - 1 \right)^{1 + 2}M_{12}\\ &= - M_{12}\\ &= - ( - 80)\\ &= 80 \end{split} \nonumber

Similarly

C_{13} = - 384 \nonumber

C_{21} = 7 \nonumber

C_{22} = - 119 \nonumber

C_{23} = 420 \nonumber

C_{31} = - 3 \nonumber

C_{32} = 39 \nonumber

C_{33} = - 120 \nonumber

Hence the matrix of cofactors of \lbrack A\rbrack is

\left\lbrack C \right\rbrack = \begin{bmatrix} - 4 & 80 & - 384 \\ 7 & - 119 & 420 \\ - 3 & 39 & - 120 \\ \end{bmatrix} \nonumber

The adjoint of matrix \lbrack A\rbrack is \lbrack C\rbrack^{T},

\begin{split} {adj}\left( A \right) &= \left\lbrack C \right\rbrack^{T}\\ &= \begin{bmatrix} - 4 & 7 & - 3 \\ 80 & - 119 & 39 \\ - 384 & 420 & - 120 \\ \end{bmatrix} \end{split} \nonumber

Hence

\begin{split} \left\lbrack A \right\rbrack^{- 1} &= \frac{1}{\det\left( A \right)}{adj}\left( A \right)\\ &= \frac{1}{- 84}\begin{bmatrix} - 4 & 7 & - 3 \\ 80 & - 119 & 39 \\ - 384 & 420 & - 120 \\ \end{bmatrix}\\ &= \begin{bmatrix} 0.04762 & - 0.08333 & 0.03571 \\ - 0.9524 & 1.417 & - 0.4643 \\ 4.571 & - 5.000 & 1.429 \\ \end{bmatrix} \end{split} \nonumber

If the inverse of a square matrix [A] exists, is it unique?

Yes, the inverse of a square matrix is unique, if it exists. The proof is as follows. Assume that the inverse of \lbrack A\rbrack is \lbrack B\rbrack and if this inverse is not unique, then let another inverse of \lbrack A\rbrack exist called \lbrack C\rbrack.

If \lbrack B\rbrack is the inverse of \lbrack A\rbrack, then

\lbrack B\rbrack\ \lbrack A\rbrack = \lbrack I\rbrack \nonumber

Multiply both sides by \lbrack C\rbrack,

\lbrack B\rbrack\ \lbrack A\rbrack\ \lbrack C\rbrack = \lbrack I\rbrack\ \lbrack C\rbrack \nonumber

\lbrack B\rbrack\ \lbrack A\rbrack\ \lbrack C\rbrack = \lbrack C\rbrack \nonumber

Since [C] is inverse of \lbrack A\rbrack,

\lbrack A\rbrack\ \lbrack C\rbrack = \lbrack I\rbrack\ \nonumber

Multiply both sides by \lbrack B\rbrack,

\lbrack B\rbrack\ \lbrack I\rbrack\ = \lbrack C\rbrack \nonumber

\lbrack B\rbrack\ = \lbrack C\rbrack \nonumber

This shows that \lbrack B\rbrack and \lbrack C\rbrack are the same. So the inverse of \lbrack A\rbrack is unique.

System of Equations Quiz

Quiz 1

A 3 \times 4 matrix can have a rank of at most

(A) 3

(B) 4

(C) 5

(D) 12

Quiz 2

Three kids – Jim, Corey and David receive an inheritance of \text{\$} 2,253,453. The money is put in three trusts but is not divided equally to begin with. Corey gets three times what David gets because Corey made an “A” in Dr. Kaw’s class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pay an interest of 6\%, 8\%, 11\%, respectively. The total interest of all the three trusts combined at the end of the first year is \text{\$}190,740.57. How much money was invested in each trust? The equations in a matrix form are

(A) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ .06 & .08 & .11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2253543 \\ 0 \\ 190740.57 \\ \end{bmatrix}

(B) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & - 3 \\ .06 & .08 & .11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2253543 \\ 0 \\ 190740.57 \\ \end{bmatrix}

(C) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & - 3 \\ 6 & 8 & 11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2253543 \\ 0 \\ 190740.57 \\ \end{bmatrix}

(D) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & - 3 \\ .06 & .08 & .11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2253543 \\ 0 \\ 190740.57 \\ \end{bmatrix}

Quiz 3

Which of the following matrices does not have an inverse?

(A) \begin{bmatrix} 5 & 6 \\ 7 & 8 \\ \end{bmatrix}

(B) \begin{bmatrix} 6 & 7 \\ 12 & 14 \\ \end{bmatrix}

(C) \begin{bmatrix} 6 & 0 \\ 0 & 7 \\ \end{bmatrix}

(D) \begin{bmatrix} 0 & 6 \\ 7 & 0 \\ \end{bmatrix}

Quiz 4

The set of equations

\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 7 \\ 5 & 8 & 19 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 18 \\ 26 \\ 70 \\ \end{bmatrix} \nonumber

has

(A) no solution

(B) finite number of solutions

(C) a unique solution

(D) infinite solutions

Quiz 5

Given a system of \left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \left\lbrack C \right\rbrackwhere \left\lbrack A \right\rbrackis n \times n matrix and \left\lbrack X \right\rbrackand \left\lbrack C \right\rbrackare n \times 1 matrices, a unique solution \left\lbrack X \right\rbrackexists if

(A) rank of \left\lbrack A \right\rbrack = rank of \left\lbrack A \vdots C \right\rbrack

(B) rank of \left\lbrack A \right\rbrack = rank of \left\lbrack A \vdots C \right\rbrack = n

(C) rank of \left\lbrack A \right\rbrack < rank of \left\lbrack A \vdots C \right\rbrack

(D) rank of \left\lbrack A \right\rbrack = rank of \left\lbrack A \vdots C \right\rbrack < n

Quiz 6

If \left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \begin{bmatrix} - 13 \\ 76 \\ 38 \\ \end{bmatrix} and \left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} 1 & 2 & - 4 \\ - 8 & 2 & 16 \\ 2 & 4 & 8 \\ \end{bmatrix} then

(A) \left\lbrack X \right\rbrack = \begin{bmatrix} -13.000 \\ 864.00 \\ 582.00 \\ \end{bmatrix}

(B) one cannot find a unique \left\lbrack X \right\rbrack.

(C) \left\lbrack X \right\rbrack = \begin{bmatrix} -1.0000 \\ 2.0000 \\ 4.0000 \\ \end{bmatrix}

(D) no solutions of \left\lbrack X \right\rbrack are possible

System of Equations Exercise

Exercise 1

For a set of equations \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack B\rbrack, a unique solution exists if

  1. rank (A) = rank \left( A\ \vdots\ B \right)
  2. rank (A) = rank \left( A\ \vdots\ B \right) and rank (A) = number of unknowns
  3. rank (A) = rank \left( A\ \vdots\ B \right) and rank (A) = number of rows of (A).
Answer

B

Exercise 2

The rank of matrix

A = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \\ \end{bmatrix} is

  1. 1
  2. 2
  3. 3
  4. 4
Exercise 3

A 3 \times 4 matrix can have a rank of at most

  1. 3
  2. 4
  3. 5
  4. 12
Exercise 4

If \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack has a unique solution, where the order of \lbrack A\rbrack is 3 \times 3, \lbrack X\rbrack is 3 \times 1, then the rank of \lbrack A\rbrack is

  1. 2
  2. 3
  3. 4
  4. 5
Exercise 5

Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist.

\begin{bmatrix} 1 & 2 & 5 \\ 7 & 3 & 9 \\ 8 & 5 & 14 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 8 \\ 19 \\ 27 \\ \end{bmatrix}

Answer

Consistent; Infinite solutions

Exercise 6

Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist.

\begin{bmatrix} 1 & 2 & 5 \\ 7 & 3 & 9 \\ 8 & 5 & 14 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 8 \\ 19 \\ 28 \\ \end{bmatrix}

Answer

Inconsistent

Exercise 7

Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist.

\begin{bmatrix} 1 & 2 & 5 \\ 7 & 3 & 9 \\ 8 & 5 & 13 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 8 \\ 19 \\ 28 \\ \end{bmatrix}

Answer

Consistent; Unique

Exercise 8

The set of equations

\begin{bmatrix} 1 & 2 & 5 \\ 7 & 3 & 9 \\ 8 & 5 & 14 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 8 \\ 19 \\ 27 \\ \end{bmatrix}

has

  1. Unique solution
  2. No solution
  3. Infinite solutions
Answer

C

Exercise 9

For what values of a will the following equation have

x_{1} + x_{2} + x_{3} = 4

x_{3} = 2

\left( a^{2} - 4 \right)x_{1} + x_{3} = a - 2

  1. Unique solution
  2. No solution
  3. Infinite solutions
Answer

If a \neq + 2 \ \text{or} -2, then there will be a unique solution If a = + 2 \ or - 2, then there will be no solution.
Possibility of infinite solutions does not exist.

Exercise 10

Find if

\lbrack A\rbrack = \begin{bmatrix} 5 & - 2.5 \\ - 2 & 3 \\ \end{bmatrix} \nonumber

and

\lbrack B\rbrack = \begin{bmatrix} 0.3 & 0.25 \\ 0.2 & 0.5 \\ \end{bmatrix} \nonumber

are inverse of each other.

Answer

Yes

Exercise 11

Find if

\lbrack A\rbrack = \begin{bmatrix} 5 & 2.5 \\ 2 & 3 \\ \end{bmatrix} \nonumber

and

lbrack B\rbrack = \begin{bmatrix} 0.3 & - 0.25 \\ 0.2 & 0.5 \\ \end{bmatrix} \nonumber

are inverse of each other.

Answer

No

Exercise 12

Find the

  1. cofactor matrix
  2. adjoint matrix

of

\left\lbrack A \right\rbrack = \begin{bmatrix} 3 & 4 & 1 \\ 2 & - 7 & - 1 \\ 8 & 1 & 5 \\ \end{bmatrix} \nonumber

Answer

\begin{bmatrix} - 34 & - 18 & 58 \\ - 19 & 7 & 29 \\ 3 & 5 & - 29 \\ \end{bmatrix}\begin{bmatrix} - 34 & - 19 & 3 \\ - 18 & 7 & 5 \\ 58 & 29 & - 29 \\ \end{bmatrix}

Exercise 13

Find \lbrack A\rbrack^{- 1} using any method for
\lbrack A\rbrack = \begin{bmatrix} 3 & 4 & 1 \\ 2 & - 7 & - 1 \\ 8 & 1 & 5 \\ \end{bmatrix}

Answer

\left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} 2.931 \times 10^{- 1} & 1.638 \times 10^{- 1} & - 2.586 \times 10^{- 2} \\ 1.552 \times 10^{- 1} & - 6.034 \times 10^{- 2} & - 4.310 \times 10^{- 2} \\ - 5.000 \times 10^{- 1} & - 2.500 \times 10^{- 1} & 2.500 \times 10^{- 1} \\ \end{bmatrix}

Exercise 14

Prove that if \lbrack A\rbrack and \lbrack B\rbrack are both invertible and are square matrices of same order, then

(\lbrack A\rbrack\lbrack B\rbrack)^{- 1} = \lbrack B\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1} \nonumber

Answer

\left( \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \right)^{- 1} = \left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1} \nonumber

Let \left\lbrack C \right\rbrack = \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \nonumber

\begin{split} \left\lbrack C \right\rbrack\left\lbrack B \right\rbrack^{- 1} &= \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\\ &= \left\lbrack A \right\rbrack\left\lbrack I \right\rbrack\\ &= \left\lbrack A \right\rbrack \end{split} \nonumber

Again

\left\lbrack C \right\rbrack = \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack

\begin{split} \left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack &= \left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\\ &= \left\lbrack I \right\rbrack\left\lbrack B \right\rbrack\\ &= \left\lbrack B \right\rbrack \end{split} \nonumber

So

\left\lbrack C \right\rbrack\left\lbrack B \right\rbrack^{- 1} = \left\lbrack A \right\rbrack ;\;\;\;\;\;\;\ (1) \nonumber

\left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack = \left\lbrack B \right\rbrack;\;\;\;\;\;\;\ (2) \nonumber

From (1) and (2)

\left\lbrack C \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack = \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \nonumber

\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \nonumber

\left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \nonumber

\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack B \right\rbrack \nonumber

\left\lbrack B^{- 1} \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack B \right\rbrack^{- 1}\left\lbrack B \right\rbrack \nonumber \left\lbrack B \right\rbrack^{- 1}\left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack I \right\rbrack. \nonumber

Exercise 15

What is the inverse of a square diagonal matrix? Does it always exist?

Answer

Hint: Inverse of a square n\timesn diagonal matrix \left\lbrack A \right\rbrack is \left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{a_{22}} & \cdots & 0 \\ 0 & & & \vdots \\ \vdots & \cdots & \cdots & \frac{1}{a_{nn}} \\ \end{bmatrix}
So inverse exists only if a_{ii} \neq 0 for all i.

Exercise 16

\lbrack A\rbrack and \lbrack B\rbrack are square matrices. If \lbrack A\rbrack\ \lbrack B\rbrack = \lbrack 0\rbrack and \lbrack A\rbrack is invertible, show\lbrack B\rbrack = 0.

Answer

\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack 0 \right\rbrack \nonumber \left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack A \right\rbrack^{- 1}\left\lbrack 0 \right\rbrack \nonumber

Exercise 17

If \lbrack A\rbrack\ \lbrack B\rbrack\ \lbrack C\rbrack = \lbrack I\rbrack, where \lbrack A\rbrack, \lbrack B\rbrack and \lbrack C\rbrack are of the same size, show that \lbrack B\rbrack is invertible.

Answer

Hint: det({AB}) = det(A)det(B)

Exercise 18

Prove if \lbrack B\rbrack is invertible, \lbrack A\rbrack\ \lbrack B\rbrack^{- 1} = \lbrack B\rbrack^{- 1}\lbrack A\rbrack if and only if \lbrack A\rbrack\ \lbrack B\rbrack = \lbrack B\rbrack\lbrack A\rbrack

Answer

Hint: Multiply by \left\lbrack B \right\rbrack^{- 1} on both sides, \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1} = \left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack^{- 1}

Exercise 19

For
\left\lbrack A \right\rbrack = \begin{bmatrix} 10 & - 7 & 0 \\ - 3 & 2.099 & 6 \\ 5 & - 1 & 5 \\ \end{bmatrix}
\left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} - 0.1099 & - 0.2333 & 0.2799 \\ - 0.2999 & - 0.3332 & 0.3999 \\ 0.04995 & 0.1666 & 6.664 \times 10^{- 5} \\ \end{bmatrix}
Show

{det }\left( A \right) = \frac{1}{{det}\left( A^{- 1} \right)}. \nonumber

Exercise 20

For what values of a does the linear system have

\begin{matrix} x + y = 2 \\ 6x + 6y = a \\ \end{matrix} \nonumber

  1. infinite solutions
  2. unique solution
Answer

A. 12

B. not possible

Exercise 21

Three kids - Jim, Corey and David receive an inheritance of \$2,\$253,\$453. The money is put in three trusts but is not divided equally to begin with. Corey gets three times more than David because Corey made an “A” in Dr. Kaw’s class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pays an interest of 6\%, 8\%, 11\%, respectively. The total interest of all the three trusts combined at the end of the first year is \$190,\$740.57. How much money was invested in each trust? Set the following as equations in a matrix form. Identify the unknowns. Do not solve for the unknowns.

Answer

J + C + D = \$2,\$253,\$453

C = 3D \nonumber

0.06J+0.08C+0.11D = \$190,740.57 \nonumber In matrix form

\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & - 3 \\ 0.06 & 0.08 & 0.11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2,253,453 \\ 0 \\ 190,740.57 \\ \end{bmatrix} \nonumber

Exercise 22

What is the rank of

\begin{bmatrix} 1 & 2 & 3 \\ 4 & 6 & 7 \\ 6 & 10 & 13 \\ \end{bmatrix}? \nonumber

Justify your answer.

Answer

In the above matrix, 2(Row 1) + Row 2 = Row 3. Hence, rank is less than 3. Row 1 and Row 2 are linearly independent. Hence, the rank of the matrix is 2.

Exercise 23

What is the rank of

\begin{bmatrix} 1 & 2 & 3 & 6 \\ 4 & 6 & 7 & 17 \\ 6 & 10 & 13 & 29 \\ \end{bmatrix}? \nonumber

Justify your answer.

Answer

The determinant of all the 3 \times 3 sub-matrices is zero. Hence, the rank is less than 3. Determinant of

\begin{bmatrix} 2 & 3 \\ 6 & 7 \\ \end{bmatrix} = - 4 \neq 0. \nonumber

Exercise 24

What is the rank of

\begin{bmatrix} 1 & 2 & 3 & 6 \\ 4 & 6 & 7 & 18 \\ 6 & 10 & 13 & 30 \\ \end{bmatrix}? \nonumber

Justify your answer.

Answer

In the above matrix, 2(Row 1) + Row 2 = Row 3. Hence, rank is less than 3 as the 3 rows are linearly dependant. Determinant of

\begin{bmatrix} 2 & 3 \\ 6 & 7 \\ \end{bmatrix} = - 4 \neq 0. \nonumber

Hence, the rank is 2.

Exercise 25

How many solutions does the following system of equations have

\begin{bmatrix} 1 & 2 & 3 \\ 4 & 6 & 7 \\ 6 & 10 & 13 \\ \end{bmatrix}\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 17 \\ 29 \\ \end{bmatrix}? \nonumber

Justify your answer.

Answer

Rank of $ A = 2$\ Rank of A|C = 2\ Number of unknowns = 3.\ There are infinite solutions since rank of A is less than the number of unknowns.

Exercise 26

How many solutions does the following system of equations have

\begin{bmatrix} 1 & 2 & 3 \\ 4 & 6 & 7 \\ 6 & 10 & 13 \\ \end{bmatrix}\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 18 \\ 30 \\ \end{bmatrix}? \nonumber

Justify your answer.

Answer

Rank of A = 2\ Rank of A|C = 2\ Number of unknowns = 3.\ There are infinite solutions since rank of A is less than the number of unknowns.

Exercise 27

By any scientific method, find the second column of the inverse of

\begin{bmatrix} 1 & 2 & 0 \\ 4 & 5 & 0 \\ 0 & 0 & 13 \\ \end{bmatrix}. \nonumber

Answer

\begin{bmatrix} 1 & 2 & 0 \\ 4 & 5 & 0 \\ 0 & 0 & 13 \\ \end{bmatrix}\begin{bmatrix} X & a_{12}^{'} & X \\ X & a_{22}^{'} & X \\ X & a_{32}^{'} & X \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}

\begin{matrix} a_{12}^{'} + 2a_{22}^{'} = 0 \\ 4a_{12}^{'} + 5a_{22}^{'} = 1 \\ 13a_{32}^{'} = 0 \\ \end{matrix} \nonumber

Simplifying,

\begin{bmatrix} a_{12}^{'} \\ a_{22}^{'} \\ a_{32}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0.667 \\ - 0.333 \\ 0 \\ \end{bmatrix} \nonumber

Exercise 28

Just write out the inverse of (no need to show any work)

\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 \\ \end{bmatrix} \nonumber

Answer

\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{1}{5} \\ \end{bmatrix}

Exercise 29

Solve \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack B\rbrack for \lbrack X\rbrack\ if

\lbrack A\rbrack^{- 1} = \begin{bmatrix} 10 & - 7 & 0 \\ 2 & 2 & 5 \\ 2 & 0 & 6 \\ \end{bmatrix} \nonumber

and

\lbrack B\rbrack = \begin{bmatrix} 7 \\ 2.5 \\ 6.012 \\ \end{bmatrix} \nonumber

Answer

\begin{split} \lbrack X\rbrack = \lbrack A\rbrack - 1\lbrack B\rbrack\ &= \begin{bmatrix} 10 & - 7 & 0 \\ 2 & 2 & 5 \\ 2 & 0 & 6 \\ \end{bmatrix}\begin{bmatrix} 7 \\ 2.5 \\ 6.012 \\ \end{bmatrix}\\ &=\begin{bmatrix} 52.5 \\ 49.06 \\ 50.072 \\ \end{bmatrix} \end{split} \nonumber

Exercise 30

Let \lbrack A\rbrack\ be a 3 \times 3 matrix. Suppose

\lbrack X\rbrack = \begin{bmatrix} 7 \\ 2.5 \\ 6.012 \\ \end{bmatrix} \nonumber

is a solution to the homogeneous set of equations \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack 0\rbrack (the right hand side is a zero vector of order 3 \times 1). Does \lbrack A\rbrack have an inverse? Justify your answer.

Answer

Given

\lbrack A\rbrack\ \lbrack X\rbrack = \lbrack 0\rbrack
If \lbrack A\rbrack^{- 1}exists, then
\lbrack A\rbrack^{- 1}\ \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack A\rbrack^{- 1}\lbrack 0\rbrack
\lbrack I\rbrack\ \lbrack X\rbrack = \lbrack 0\rbrack
\lbrack X\rbrack = \lbrack 0\rbrack
This contradicts the given value of \lbrack X\rbrack. Hence, \lbrack A\rbrack^{- 1} does not exist.

Exercise 31

Is the set of vectors

\overrightarrow{A} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix},\overrightarrow{B} = \begin{bmatrix} 1 \\ 2 \\ 5 \\ \end{bmatrix},\overrightarrow{C} = \begin{bmatrix} 1 \\ 4 \\ 25 \\ \end{bmatrix} \nonumber

linearly independent? Justify your answer.

Answer

The set of vectors are linearly independent.

Exercise 32

What is the rank of the set of vectors

\overrightarrow{A} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix},\overrightarrow{B} = \begin{bmatrix} 1 \\ 2 \\ 5 \\ \end{bmatrix},\overrightarrow{C} = \begin{bmatrix} 1 \\ 3 \\ 6 \\ \end{bmatrix}? \nonumber

Justify your answer.

Answer

Since, the 3 vectors are linearly independent as proved above, the rank of the 3 vectors is 3.

Exercise 33

What is the rank of

\overrightarrow{A} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix},\overrightarrow{B} = \begin{bmatrix} 2 \\ 2 \\ 4 \\ \end{bmatrix},\overrightarrow{C} = \begin{bmatrix} 3 \\ 3 \\ 5 \\ \end{bmatrix}? \nonumber

Justify your answer.

Answer

By inspection, \overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}. Hence, the 3 vectors are linearly dependent, and the rank is less than 3. Linear combination of\overrightarrow{A}\text{and}\ \overrightarrow{B}, that is, K_{1}\overrightarrow{A} + K_{2}\overrightarrow{B} = 0has only one solution K1= K2 = 0. Therefore, the rank is 2.


This page titled 5: System of Equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Autar Kaw via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?