5: System of Equations
( \newcommand{\kernel}{\mathrm{null}\,}\)
After reading this chapter, you should be able to:
- setup simultaneous linear equations in matrix form and vice-versa,
- understand the concept of the inverse of a matrix,
- know the difference between a consistent and inconsistent system of linear equations, and
- learn that a system of linear equations can have a unique solution, no solution or infinite solutions.
Matrix algebra is used for solving systems of equations. Can you illustrate this concept?
Matrix algebra is used to solve a system of simultaneous linear equations. In fact, for many mathematical procedures such as the solution to a set of nonlinear equations, interpolation, integration, and differential equations, the solutions reduce to a set of simultaneous linear equations. Let us illustrate with an example for interpolation.
The upward velocity of a rocket is given at three different times on the following table.
Time, t | Velocity, v |
---|---|
(s ) | (m/s) |
5 | 106.8 |
8 | 177.2 |
12 | 279.2 |
The velocity data is approximated by a polynomial as
v\left( t \right) = at^{2} + {bt} + c,5 \leq t \leq 12 \nonumber
Set up the equations in matrix form to find the coefficients a,b,c of the velocity profile.
Solution
The polynomial is going through three data points \left( t_{1},v_{1} \right),\left( t_{2},v_{2} \right),and\left( t_{3},v_{3} \right) where from table 5.1.
t_{1} = 5,\ v_{1} = 106.8 \nonumber
t_{2} = 8,\ v_{2} = 177.2 \nonumber
t_{3} = 12,\ v_{3} = 279.2 \nonumber
Requiring that v\left( t \right) = at^{2} + {bt} + c passes through the three data points gives
v\left( t_{1} \right) = v_{1} = at_{1}^{2} + bt_{1} + c \nonumber
v\left( t_{2} \right) = v_{2} = at_{2}^{2} + bt_{2} + c \nonumber
v\left( t_{3} \right) = v_{3} = at_{3}^{2} + bt_{3} + c \nonumber
Substituting the data \left( t_{1},v_{1} \right),\left( t_{2},v_{2} \right),\ and\ \left( t_{3},v_{3} \right) gives
a\left( 5^{2} \right) + b\left( 5 \right) + c = 106.8 \nonumber
a\left( 8^{2} \right) + b\left( 8 \right) + c = 177.2 \nonumber
a\left( 12^{2} \right) + b\left( 12 \right) + c = 279.2 \nonumber
or
25a + 5b + c = 106.8 \nonumber
64a + 8b + c = 177.2 \nonumber
144a + 12b + c = 279.2 \nonumber
This set of equations can be rewritten in the matrix form as
\begin{bmatrix} 25a + & 5b + & c \\ 64a + & 8b + & c \\ 144a + & 12b + & c \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
The above equation can be written as a linear combination as follows
a\begin{bmatrix} 25 \\ 64 \\ 144 \\ \end{bmatrix} + b\begin{bmatrix} 5 \\ 8 \\ 12 \\ \end{bmatrix} + c\begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
and further using matrix multiplication gives
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
The above is an illustration of why matrix algebra is needed. The complete solution to the set of equations is given later in this chapter.
A general set of m linear equations and n unknowns,
a_{11}x_{1} + a_{12}x_{2} + \cdots\cdots + a_{1n}x_{n} = c_{1} \nonumber
a_{21}x_{1} + a_{22}x_{2} + \cdots\cdots + a_{2n}x_{n} = c_{2} \nonumber
\text{..........................................} \nonumber
\text{..........................................} \nonumber
a_{m1}x_{1} + a_{m2}x_{2} + ........ + a_{mn}x_{n} = c_{m} \nonumber
can be rewritten in the matrix form as
\begin{bmatrix} a_{11} & a_{12} & . & . & a_{1n} \\ a_{21} & a_{22} & . & . & a_{2n} \\ \vdots & & & & \vdots \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & . & . & a_{mn} \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ x_{n} \\ \end{bmatrix} = \begin{bmatrix} c_{1} \\ c_{2} \\ \cdot \\ \cdot \\ c_{m} \\ \end{bmatrix} \nonumber
Denoting the matrices by \left\lbrack A \right\rbrack, \left\lbrack X \right\rbrack, and \left\lbrack C \right\rbrack, the system of equation is
\left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack, where \left\lbrack A \right\rbrack is called the coefficient matrix, \left\lbrack C \right\rbrack is called the right hand side vector and \left\lbrack X \right\rbrack is called the solution vector.
Sometimes \left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack systems of equations are written in the augmented form. That is
\left\lbrack A \ \vdots \ C \right\rbrack = \left\lbrack \begin{matrix} a_{11} & a_{12} & {......} & a_{1n} \\ a_{21} & a_{22} & {......} & a_{2n} \\ \begin{matrix} \vdots \\ \vdots \\ \end{matrix} & \begin{matrix} \\ \\ \end{matrix} & \begin{matrix} \\ \\ \end{matrix} & \begin{matrix} \\ \\ \end{matrix} \\ a_{m1} & a_{m2} & {......} & a_{mn} \\ \end{matrix}\begin{matrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{matrix}\begin{matrix} c_{1} \\ c_{2} \\ \\ \\ c_{n} \\ \end{matrix} \right\rbrack \nonumber
A system of equations can be consistent or inconsistent. What does that mean?
A system of equations \left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack is consistent if there is a solution, and it is inconsistent if there is no solution. However, a consistent system of equations does not mean a unique solution, that is, a consistent system of equations may have a unique solution or infinite solutions (Figure 1).

Give examples of consistent and inconsistent system of equations.
Solution
- The system of equations
\begin{bmatrix} 2 & 4 \\ 1 & 3 \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ \end{bmatrix} \nonumber
is a consistent system of equations as it has a unique solution, that is,
\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} \nonumber
- The system of equations
\begin{bmatrix} 2 & 4 \\ 1 & 2 \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ \end{bmatrix} \nonumber
is also a consistent system of equations but it has infinite solutions as given as follows.
Expanding the above set of equations,
2x + 4y = 6 \nonumber
x + 2y = 3 \nonumber
you can see that they are the same equation. Hence, any combination of \left( x,y \right) that satisfies
2x + 4y = 6 \nonumber
is a solution. For example \left( x,y \right) = \left( 1,1 \right) is a solution. Other solutions include \left( x,y \right) = (0.5,1.25), \left( x,y \right) = (0,1.5), and so on.
- The system of equations
\begin{bmatrix} 2 & 4 \\ 1 & 2 \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ \end{bmatrix} \nonumber
is inconsistent as no solution exists.
How can one distinguish between a consistent and inconsistent system of equations?
A system of equations \left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack is consistent if the rank of A is equal to the rank of the augmented matrix \left\lbrack A \ \vdots \ C \right\rbrack
A system of equations \left\lbrack A \right\rbrack\ \left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack is inconsistent if the rank of A is less than the rank of the augmented matrix \left\lbrack A \ \vdots \ C \right\rbrack.
But, what do you mean by rank of a matrix?
The rank of a matrix is defined as the order of the largest square submatrix whose determinant is not zero.
What is the rank of
\left\lbrack A \right\rbrack = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 0 & 5 \\ 1 & 2 & 3 \\ \end{bmatrix}?
Solution
The largest square submatrix possible is of order 3 and that is \lbrack A\rbrack itself. Since det(A) = - 23 \neq 0, the rank of \lbrack A\rbrack = 3.
What is the rank of
\left\lbrack A \right\rbrack = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 0 & 5 \\ 5 & 1 & 7 \\ \end{bmatrix}? \nonumber
Solution
The largest square submatrix of \lbrack A\rbrack is of order 3 and that is \lbrack A\rbrack itself. Since det(A) = 0, the rank of \lbrack A\rbrack is less than 3. The next largest square submatrix would be a 2 \times2 matrix. One of the square submatrices of \lbrack A\rbrack is
\left\lbrack B \right\rbrack = \begin{bmatrix} 3 & 1 \\ 2 & 0 \\ \end{bmatrix} \nonumber
and det(B) = - 2 \neq 0. Hence the rank of \lbrack A\rbrack is 2. There is no need to look at other 2 \times 2 submatrices to establish that the rank of \lbrack A\rbrack is 2.
How do I now use the concept of rank to find if
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
is a consistent or inconsistent system of equations?
Solution
The coefficient matrix is
\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber
and the right-hand side vector is
\left\lbrack C \right\rbrack = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
The augmented matrix is
\left\lbrack B \right\rbrack = \begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \\ \end{bmatrix} \nonumber
Since there are no square submatrices of order 4 as \lbrack B\rbrack is a 3 \times 3 matrix, the rank of \lbrack B\rbrack is at most 3. So let us look at the square submatrices of \lbrack B\rbrack of order 3; if any of these square submatrices have determinant not equal to zero, then the rank is 3. For example, a submatrix of the augmented matrix \lbrack B\rbrack is
\lbrack D\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber
hasdet(D) = - 84 \neq 0.
Hence the rank of the augmented matrix \lbrack B\rbrack is 3. Since \lbrack A\rbrack = \lbrack D\rbrack, the rank of \lbrack A\rbrack is 3. Since the rank of the augmented matrix \lbrack B\rbrack equals the rank of the coefficient matrix \lbrack A\rbrack, the system of equations is consistent.
Use the concept of rank of matrix to find if
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 284.0 \\ \end{bmatrix} \nonumber
is consistent or inconsistent?
Solution
The coefficient matrix is given by
\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix} \nonumber
and the right-hand side
\left\lbrack C \right\rbrack = \begin{bmatrix} 106.8 \\ 177.2 \\ 284.0 \\ \end{bmatrix} \nonumber
The augmented matrix is
\left\lbrack B \right\rbrack = \begin{bmatrix} 25 & 5 & 1 & :106.8 \\ 64 & 8 & 1 & :177.2 \\ 89 & 13 & 2 & :284.0 \\ \end{bmatrix} \nonumber
Since there are no square submatrices of order 4 as \lbrack B\rbrack is a 4 \times 3 matrix, the rank of the augmented \lbrack B\rbrack is at most 3. So let us look at square submatrices of the augmented matrix \lbrack B\rbrack of order 3 and see if any of these have determinants not equal to zero. For example, a square submatrix of the augmented matrix \lbrack B\rbrack is
\left\lbrack D \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix} \nonumber
has det(D) = 0. This means, we need to explore other square submatrices of order 3 of the augmented matrix \lbrack B\rbrack and find their determinants.
That is,
\left\lbrack E \right\rbrack = \begin{bmatrix} 5 & 1 & 106.8 \\ 8 & 1 & 177.2 \\ 13 & 2 & 284.0 \\ \end{bmatrix} \nonumber
det(E) = 0 \nonumber
\left\lbrack F \right\rbrack = \begin{bmatrix} 25 & 5 & 106.8 \\ 64 & 8 & 177.2 \\ 89 & 13 & 284.0 \\ \end{bmatrix} \nonumber
det(F) = 0 \nonumber
\left\lbrack G \right\rbrack = \begin{bmatrix} 25 & 1 & 106.8 \\ 64 & 1 & 177.2 \\ 89 & 2 & 284.0 \\ \end{bmatrix} \nonumber
det(G) = 0 \nonumber
All the square submatrices of order 3 \times 3 of the augmented matrix \lbrack B\rbrack have a zero determinant. So the rank of the augmented matrix \lbrack B\rbrack is less than 3. Is the rank of augmented matrix \lbrack B\rbrack equal to 2?. One of the 2 \times 2 submatrices of the augmented matrix \lbrack B\rbrack is
\left\lbrack H \right\rbrack = \begin{bmatrix} 25 & 5 \\ 64 & 8 \\ \end{bmatrix} \nonumber
and
det(H) = - 120 \neq 0 \nonumber
So, the rank of the augmented matrix \lbrack B\rbrack is 2.
Now we need to find the rank of the coefficient matrix \lbrack B\rbrack.
\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix} \nonumber
and
det(A) = 0 \nonumber
So, the rank of the coefficient matrix \lbrack A\rbrack is less than 3. A square submatrix of the coefficient matrix \lbrack A\rbrack is
\left\lbrack J \right\rbrack = \begin{bmatrix} 5 & 1 \\ 8 & 1 \\ \end{bmatrix} \nonumber
det(J) = - 3 \neq 0 \nonumber
So, the rank of the coefficient matrix \lbrack A\rbrack is 2.
Hence, rank of the coefficient matrix \lbrack A\rbrack equals the rank of the augmented matrix [B]. So the system of equations \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack is consistent.
Use the concept of rank to find if
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 280.0 \\ \end{bmatrix} \nonumber
is consistent or inconsistent.
Solution
The augmented matrix is
\left\lbrack B \right\rbrack = \begin{bmatrix} 25 & 5 & 1 & :106.8 \\ 64 & 8 & 1 & :177.2 \\ 89 & 13 & 2 & :280.0 \\ \end{bmatrix} \nonumber
Since there are no square submatrices of order 4 \times 4 as the augmented matrix \lbrack B\rbrack is a 4 \times 3 matrix, the rank of the augmented matrix \lbrack B\rbrack is at most 3. So let us look at square submatrices of the augmented matrix (B) of order 3 and see if any of the 3 \times 3 submatrices have a determinant not equal to zero. For example, a square submatrix of order 3 \times 3 of \lbrack B\rbrack
\left\lbrack D \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix} \nonumber
\det(D)\ = \ 0 \nonumber
So, it means, we need to explore other square submatrices of the augmented matrix \lbrack B\rbrack
\left\lbrack E \right\rbrack = \begin{bmatrix} 5 & 1 & 106.8 \\ 8 & 1 & 177.2 \\ 13 & 2 & 280.0 \\ \end{bmatrix} \nonumber
det(E) = 12.0 \neq 0.
So, the rank of the augmented matrix \lbrack B\rbrack is 3.
The rank of the coefficient matrix \lbrack A\rbrack is 2 from the previous example.
Since the rank of the coefficient matrix \lbrack A\rbrack is less than the rank of the augmented matrix \lbrack B\rbrack, the system of equations is inconsistent. Hence, no solution exists for \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack.
If a solution exists, how do we know whether it is unique?
In a system of equations \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack that is consistent, the rank of the coefficient matrix \lbrack A\rbrack is the same as the augmented matrix \lbrack A\left| C \right.\ \rbrack. If in addition, the rank of the coefficient matrix \lbrack A\rbrack is same as the number of unknowns, then the solution is unique; if the rank of the coefficient matrix \lbrack A\rbrack is less than the number of unknowns, then infinite solutions exist.

We found that the following system of equations
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
is a consistent system of equations. Does the system of equations have a unique solution or does it have infinite solutions?
Solution
The coefficient matrix is
\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber
and the right-hand side is
\left\lbrack C \right\rbrack = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
While finding out whether the above equations were consistent in an earlier example, we found that the rank of the coefficient matrix (A) equals rank of augmented matrix \left\lbrack A \ \vdots \ C \right\rbrack equals 3.
The solution is unique as the number of unknowns = 3 = rank of (A).
We found that the following system of equations
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 284.0 \\ \end{bmatrix} \nonumber
is a consistent system of equations. Is the solution unique or does it have infinite solutions.
Solution
While finding out whether the above equations were consistent, we found that the rank of the coefficient matrix \lbrack A\rbrackequals the rank of augmented matrix \left( A \ \vdots\ C \right) equals 2
Since the rank of \lbrack A\rbrack = 2 < number of unknowns = 3, infinite solutions exist.
If we have more equations than unknowns in [A] [X] = [C], does it mean the system is inconsistent?
No, it depends on the rank of the augmented matrix \left\lbrack A\ \vdots \ C \right\rbrack and the rank of \lbrack A\rbrack.
- For example
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ 284.0 \\ \end{bmatrix} \nonumber
is consistent, since
- rank of augmented matrix = 3
- rank of coefficient matrix = 3
Now since the rank of (A) = 3 = number of unknowns, the solution is not only consistent but also unique.
- For example
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ 280.0 \\ \end{bmatrix} \nonumber
is inconsistent, since
- rank of augmented matrix = 4
- rank of coefficient matrix = 3
- For example
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 50 & 10 & 2 \\ 89 & 13 & 2 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 213.6 \\ 280.0 \\ \end{bmatrix} \nonumber
is consistent, since
- rank of augmented matrix = 2
- rank of coefficient matrix = 2
But since the rank of \lbrack A\rbrack = 2 < the number of unknowns = 3, infinite solutions exist.
Consistent systems of equations can only have a unique solution or infinite solutions. Can a system of equations have more than one but not infinite number of solutions?
No, you can only have either a unique solution or infinite solutions. Let us suppose \lbrack A\rbrack\lbrack X\rbrack = \lbrack C\rbrackhas two solutions \lbrack Y\rbrack and \lbrack Z\rbrack so that
\lbrack A\rbrack\lbrack Y\rbrack = \lbrack C\rbrack \nonumber
\lbrack A\rbrack\lbrack Z\rbrack = \lbrack C\rbrack \nonumber
If r is a constant, then from the two equations
r\left\lbrack A \right\rbrack\left\lbrack Y \right\rbrack = r\left\lbrack C \right\rbrack \nonumber
\left( 1 - r \right)\left\lbrack A \right\rbrack\left\lbrack Z \right\rbrack = \left( 1 - r \right)\left\lbrack C \right\rbrack \nonumber
Adding the above two equations gives
r\left\lbrack A \right\rbrack\left\lbrack Y \right\rbrack + \left( 1 - r \right)\left\lbrack A \right\rbrack\left\lbrack Z \right\rbrack = r\left\lbrack C \right\rbrack + \left( 1 - r \right)\left\lbrack C \right\rbrack \nonumber
\left\lbrack A \right\rbrack\left( r\left\lbrack Y \right\rbrack + \left( 1 - r \right)\left\lbrack Z \right\rbrack \right) = \left\lbrack C \right\rbrack \nonumber
Hence
r\left\lbrack Y \right\rbrack + \left( 1 - r \right)\left\lbrack Z \right\rbrack \nonumber
is a solution to
\left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack \nonumber
Since r is any scalar, there are infinite solutions for \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack of the form
r\left\lbrack Y \right\rbrack + \left( 1 - r \right)\left\lbrack Z \right\rbrack \nonumber
Can you divide two matrices?
If \lbrack A\rbrack\ \lbrack B\rbrack = \lbrack C\rbrack is defined, it might seem intuitive that \lbrack A\rbrack = \frac{\left\lbrack C \right\rbrack}{\left\lbrack B \right\rbrack}, but matrix division is not defined like that. However an inverse of a matrix can be defined for certain types of square matrices. The inverse of a square matrix \lbrack A\rbrack, if existing, is denoted by \lbrack A\rbrack^{- 1} such that
\lbrack A\rbrack\ \lbrack A\rbrack^{- 1} = \lbrack I\rbrack = \lbrack A\rbrack^{- 1}\lbrack A\rbrack \nonumber
Where \lbrack I\rbrack is the identity matrix.
In other words, let [A] be a square matrix. If \lbrack B\rbrack is another square matrix of the same size such that \lbrack B\rbrack\ \lbrack A\rbrack = \lbrack I\rbrack, then \lbrack B\rbrack is the inverse of \lbrack A\rbrack. \lbrack A\rbrack is then called to be invertible or nonsingular. If \lbrack A\rbrack^{- 1} does not exist, \lbrack A\rbrack is called noninvertible or singular.
If \lbrack A\rbrack and \lbrack B\rbrack are two n \times n matrices such that \lbrack B\rbrack\ \lbrack A\rbrack = \lbrack I\rbrack, then these statements are also true
[B] is the inverse of [A]
[A] is the inverse of [B]
[A] and [B] are both invertible
[A] [B]=[I].
[A] and [B] are both nonsingular
all columns of [A] and [B] are linearly independent
all rows of [A] and [B] are linearly independent.
Determine if
\lbrack B\rbrack = \begin{bmatrix} 3 & 2 \\ 5 & 3 \\ \end{bmatrix}\ \nonumber
is the inverse of
\lbrack A\rbrack = \begin{bmatrix} - 3 & 2 \\ 5 & - 3 \\ \end{bmatrix} \nonumber
Solution
\begin{split} \lbrack B\rbrack\lbrack A\rbrack &= \ \ \begin{bmatrix} 3 & 2 \\ 5 & 3 \\ \end{bmatrix}\begin{bmatrix} - 3 & 2 \\ 5 & - 3 \\ \end{bmatrix}\\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}\\ &= \lbrack I\rbrack \end{split} \nonumber
Since
\ \left\lbrack B \right\rbrack\left\lbrack A \right\rbrack = \left\lbrack I \right\rbrack, \nonumber
\lbrack B\rbrack is the inverse of [A] and \lbrack A\rbrack is the inverse of \lbrack B\rbrack.
But, we can also show that
\begin{split} \lbrack A\rbrack\lbrack B\rbrack &= \begin{bmatrix} - 3 & 2 \\ 5 & - 3 \\ \end{bmatrix}\begin{bmatrix} 3 & 2 \\ 5 & 3 \\ \end{bmatrix}\\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}\\ &= \lbrack I\rbrack \end{split} \nonumber
to show that \lbrack A\rbrack is the inverse of \lbrack B\rbrack.
Can I use the concept of the inverse of a matrix to find the solution of a set of equations [A] [X] = [C]?
Yes, if the number of equations is the same as the number of unknowns, the coefficient matrix \lbrack A\rbrack is a square matrix.
Given
\lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack \nonumber
Then, if \lbrack A\rbrack^{- 1} exists, multiplying both sides by \lbrack A\rbrack^{- 1}.
\lbrack A\rbrack^{- 1}\lbrack A\rbrack\lbrack X\rbrack = \lbrack A\rbrack^{- 1}\lbrack C\rbrack \nonumber
\lbrack I\rbrack\ \lbrack X\rbrack = \lbrack A\rbrack^{- 1}\lbrack C\rbrack \nonumber
\lbrack X\rbrack = \lbrack A\rbrack^{- 1}\lbrack C\rbrack \nonumber
This implies that if we are able to find \lbrack A\rbrack^{- 1}, the solution vector of \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack is simply a multiplication of \lbrack A\rbrack^{- 1} and the right hand side vector, \lbrack C\rbrack.
How do I find the inverse of a matrix?
If \lbrack A\rbrack is a n \times n matrix, then \lbrack A\rbrack^{- 1} is a n \times n matrix and according to the definition of inverse of a matrix
\lbrack A\rbrack\ \lbrack A\rbrack^{- 1} = \lbrack I\rbrack \nonumber
Denoting
\lbrack A\rbrack = \begin{bmatrix} a_{11} & a_{12} & \cdot & \cdot & a_{1n} \\ a_{21} & a_{22} & \cdot & \cdot & a_{2n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{n1} & a_{n2} & \cdot & \cdot & a_{nn} \\ \end{bmatrix} \nonumber
\lbrack A\rbrack^{- 1} = \begin{bmatrix} a_{11}^{'} & a_{12}^{'} & \cdot & \cdot & a_{1n}^{'} \\ a_{21}^{'} & a_{22}^{'} & \cdot & \cdot & a_{2n}^{'} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{n1}^{'} & a_{n2}^{'} & \cdot & \cdot & a_{nn}^{'} \\ \end{bmatrix} \nonumber
\lbrack I\rbrack = \begin{bmatrix} 1 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & 1 & & & & 0 \\ 0 & & \cdot & & & \cdot \\ \cdot & & & 1 & & \cdot \\ \cdot & & & & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \cdot & 1 \\ \end{bmatrix} \nonumber
Using the definition of matrix multiplication, the first column of the \lbrack A\rbrack^{- 1} matrix can then be found by solving
\begin{bmatrix} a_{11} & a_{12} & \cdot & \cdot & a_{1n} \\ a_{21} & a_{22} & \cdot & \cdot & a_{2n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{n1} & a_{n2} & \cdot & \cdot & a_{nn} \\ \end{bmatrix}\begin{bmatrix} a_{11}^{'} \\ a_{21}^{'} \\ \cdot \\ \cdot \\ a_{n1}^{'} \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \cdot \\ \cdot \\ 0 \\ \end{bmatrix} \nonumber
Similarly, one can find the other columns of the \lbrack A\rbrack^{- 1} matrix by changing the right hand side accordingly.
The upward velocity of the rocket is given by
Time, t (s) | Velocity, v (m/s) |
---|---|
5 | 106.8 |
8 | 177.2 |
12 | 279.2 |
In an earlier example, we wanted to approximate the velocity profile by
v\left( t \right) = at^{2} + {bt} + c,5 \leq t \leq 12 \nonumber
We found that the coefficients a,\ b,\ and\ c in v\left( t \right) are given by
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
First, find the inverse of
\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber
and then use the definition of inverse to find the coefficients a,\ b,\ and\ c.
Solution
If
\left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} a_{11}^{'} & a_{12}^{'} & a_{13}^{'} \\ a_{21}^{'} & a_{22}^{'} & a_{23}^{'} \\ a_{31}^{'} & a_{32}^{'} & a_{33}^{'} \\ \end{bmatrix} \nonumber
is the inverse of \lbrack A\rbrack, then
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a_{11}^{'} & a_{12}^{'} & a_{13}^{'} \\ a_{21}^{'} & a_{22}^{'} & a_{23}^{'} \\ a_{31}^{'} & a_{32}^{'} & a_{33}^{'} \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \nonumber
gives three sets of equations
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a_{11}^{'} \\ a_{21}^{'} \\ a_{31}^{'} \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix} \nonumber
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a_{12}^{'} \\ a_{22}^{'} \\ a_{32}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \end{bmatrix} \nonumber
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix}\begin{bmatrix} a_{13}^{'} \\ a_{23}^{'} \\ a_{33}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \end{bmatrix} \nonumber
Solving the above three sets of equations separately gives
\begin{bmatrix} a_{11}^{'} \\ a_{21}^{'} \\ a_{31}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0.04762 \\ - 0.9524 \\ 4.571 \\ \end{bmatrix} \nonumber
\begin{bmatrix} a_{12}^{'} \\ a_{22}^{'} \\ a_{32}^{'} \\ \end{bmatrix} = \begin{bmatrix} - 0.08333 \\ 1.417 \\ - 5.000 \\ \end{bmatrix} \nonumber
\begin{bmatrix} a_{13}^{'} \\ a_{23}^{'} \\ a_{33}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0.03571 \\ - 0.4643 \\ 1.429 \\ \end{bmatrix} \nonumber
Hence
\lbrack A\rbrack^{- 1} = \begin{bmatrix} 0.04762 & - 0.08333 & 0.03571 \\ - 0.9524 & 1.417 & - 0.4643 \\ 4.571 & - 5.000 & 1.429 \\ \end{bmatrix} \nonumber
Now
\left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \left\lbrack C \right\rbrack \nonumber
where
\left\lbrack X \right\rbrack = \begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} \nonumber
\left\lbrack C \right\rbrack = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
Using the definition of \left\lbrack A \right\rbrack^{- 1},
\left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack \nonumber
\left\lbrack X \right\rbrack = \left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack \nonumber
\begin{bmatrix} 0.04762 & - 0.08333 & 0.03571 \\ - 0.9524 & 1.417 & - 0.4643 \\ 4.571 & - 5.000 & 1.429 \\ \end{bmatrix}\begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \\ \end{bmatrix} \nonumber
Hence
\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 0.2905 \\ 19.69 \\ 1.086 \\ \end{bmatrix} \nonumber
So
v\left( t \right) = 0.2905t^{2} + 19.69t + 1.086,5 \leq t \leq 12 \nonumber
Is there another way to find the inverse of a matrix?
For finding the inverse of small matrices, the inverse of an invertible matrix can be found by
\left\lbrack A \right\rbrack^{- 1} = \frac{1}{\det\left( A \right)}{adj}\left( A \right) \nonumber
where
{adj}\left( A \right) = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & & C_{2n} \\ \vdots & & & \\ C_{n1} & C_{n2} & \cdots & C_{nn} \\ \end{bmatrix}^{T} \nonumber
where C_{ij} are the cofactors of a_{ij}. The matrix
\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & & & \vdots \\ C_{n1} & \cdots & \cdots & C_{nn} \\ \end{bmatrix} \nonumber
itself is called the matrix of cofactors from [A]. Cofactors are defined in Chapter 4.
Find the inverse of
\left\lbrack A \right\rbrack = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{bmatrix} \nonumber
Solution
From Example 4.6 in Chapter 04.06, we found
\det\left( A \right) = - 84 \nonumber
Next we need to find the adjoint of \lbrack A\rbrack. The cofactors of A are found as follows.
The minor of entry a_{11} is
\begin{split} M_{11} &= \left| \begin{matrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{matrix} \right|\\ &= \left| \begin{matrix} 8 & 1 \\ 12 & 1 \\ \end{matrix} \right|\\ &= - 4 \end{split} \nonumber
The cofactors of entry a_{11} is
\begin{split} C_{11} &= \left( - 1 \right)^{1 + 1}M_{11}\\ &= M_{11}\\ &= - 4 \end{split} \nonumber
The minor of entry a_{12} is
\begin{split} M_{12} &= \left| \begin{matrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \\ \end{matrix} \right|\\ &= \left| \begin{matrix} 64 & 1 \\ 144 & 1 \\ \end{matrix} \right|\\ &= - 80 \end{split} \nonumber
The cofactor of entry a_{12} is
\begin{split} C_{12} &= \left( - 1 \right)^{1 + 2}M_{12}\\ &= - M_{12}\\ &= - ( - 80)\\ &= 80 \end{split} \nonumber
Similarly
C_{13} = - 384 \nonumber
C_{21} = 7 \nonumber
C_{22} = - 119 \nonumber
C_{23} = 420 \nonumber
C_{31} = - 3 \nonumber
C_{32} = 39 \nonumber
C_{33} = - 120 \nonumber
Hence the matrix of cofactors of \lbrack A\rbrack is
\left\lbrack C \right\rbrack = \begin{bmatrix} - 4 & 80 & - 384 \\ 7 & - 119 & 420 \\ - 3 & 39 & - 120 \\ \end{bmatrix} \nonumber
The adjoint of matrix \lbrack A\rbrack is \lbrack C\rbrack^{T},
\begin{split} {adj}\left( A \right) &= \left\lbrack C \right\rbrack^{T}\\ &= \begin{bmatrix} - 4 & 7 & - 3 \\ 80 & - 119 & 39 \\ - 384 & 420 & - 120 \\ \end{bmatrix} \end{split} \nonumber
Hence
\begin{split} \left\lbrack A \right\rbrack^{- 1} &= \frac{1}{\det\left( A \right)}{adj}\left( A \right)\\ &= \frac{1}{- 84}\begin{bmatrix} - 4 & 7 & - 3 \\ 80 & - 119 & 39 \\ - 384 & 420 & - 120 \\ \end{bmatrix}\\ &= \begin{bmatrix} 0.04762 & - 0.08333 & 0.03571 \\ - 0.9524 & 1.417 & - 0.4643 \\ 4.571 & - 5.000 & 1.429 \\ \end{bmatrix} \end{split} \nonumber
If the inverse of a square matrix [A] exists, is it unique?
Yes, the inverse of a square matrix is unique, if it exists. The proof is as follows. Assume that the inverse of \lbrack A\rbrack is \lbrack B\rbrack and if this inverse is not unique, then let another inverse of \lbrack A\rbrack exist called \lbrack C\rbrack.
If \lbrack B\rbrack is the inverse of \lbrack A\rbrack, then
\lbrack B\rbrack\ \lbrack A\rbrack = \lbrack I\rbrack \nonumber
Multiply both sides by \lbrack C\rbrack,
\lbrack B\rbrack\ \lbrack A\rbrack\ \lbrack C\rbrack = \lbrack I\rbrack\ \lbrack C\rbrack \nonumber
\lbrack B\rbrack\ \lbrack A\rbrack\ \lbrack C\rbrack = \lbrack C\rbrack \nonumber
Since [C] is inverse of \lbrack A\rbrack,
\lbrack A\rbrack\ \lbrack C\rbrack = \lbrack I\rbrack\ \nonumber
Multiply both sides by \lbrack B\rbrack,
\lbrack B\rbrack\ \lbrack I\rbrack\ = \lbrack C\rbrack \nonumber
\lbrack B\rbrack\ = \lbrack C\rbrack \nonumber
This shows that \lbrack B\rbrack and \lbrack C\rbrack are the same. So the inverse of \lbrack A\rbrack is unique.
System of Equations Quiz
A 3 \times 4 matrix can have a rank of at most
(A) 3
(B) 4
(C) 5
(D) 12
Three kids – Jim, Corey and David receive an inheritance of \text{\$} 2,253,453. The money is put in three trusts but is not divided equally to begin with. Corey gets three times what David gets because Corey made an “A” in Dr. Kaw’s class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pay an interest of 6\%, 8\%, 11\%, respectively. The total interest of all the three trusts combined at the end of the first year is \text{\$}190,740.57. How much money was invested in each trust? The equations in a matrix form are
(A) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ .06 & .08 & .11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2253543 \\ 0 \\ 190740.57 \\ \end{bmatrix}
(B) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & - 3 \\ .06 & .08 & .11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2253543 \\ 0 \\ 190740.57 \\ \end{bmatrix}
(C) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & - 3 \\ 6 & 8 & 11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2253543 \\ 0 \\ 190740.57 \\ \end{bmatrix}
(D) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & - 3 \\ .06 & .08 & .11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2253543 \\ 0 \\ 190740.57 \\ \end{bmatrix}
Which of the following matrices does not have an inverse?
(A) \begin{bmatrix} 5 & 6 \\ 7 & 8 \\ \end{bmatrix}
(B) \begin{bmatrix} 6 & 7 \\ 12 & 14 \\ \end{bmatrix}
(C) \begin{bmatrix} 6 & 0 \\ 0 & 7 \\ \end{bmatrix}
(D) \begin{bmatrix} 0 & 6 \\ 7 & 0 \\ \end{bmatrix}
The set of equations
\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 7 \\ 5 & 8 & 19 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 18 \\ 26 \\ 70 \\ \end{bmatrix} \nonumber
has
(A) no solution
(B) finite number of solutions
(C) a unique solution
(D) infinite solutions
Given a system of \left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \left\lbrack C \right\rbrackwhere \left\lbrack A \right\rbrackis n \times n matrix and \left\lbrack X \right\rbrackand \left\lbrack C \right\rbrackare n \times 1 matrices, a unique solution \left\lbrack X \right\rbrackexists if
(A) rank of \left\lbrack A \right\rbrack = rank of \left\lbrack A \vdots C \right\rbrack
(B) rank of \left\lbrack A \right\rbrack = rank of \left\lbrack A \vdots C \right\rbrack = n
(C) rank of \left\lbrack A \right\rbrack < rank of \left\lbrack A \vdots C \right\rbrack
(D) rank of \left\lbrack A \right\rbrack = rank of \left\lbrack A \vdots C \right\rbrack < n
If \left\lbrack A \right\rbrack\left\lbrack X \right\rbrack = \begin{bmatrix} - 13 \\ 76 \\ 38 \\ \end{bmatrix} and \left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} 1 & 2 & - 4 \\ - 8 & 2 & 16 \\ 2 & 4 & 8 \\ \end{bmatrix} then
(A) \left\lbrack X \right\rbrack = \begin{bmatrix} -13.000 \\ 864.00 \\ 582.00 \\ \end{bmatrix}
(B) one cannot find a unique \left\lbrack X \right\rbrack.
(C) \left\lbrack X \right\rbrack = \begin{bmatrix} -1.0000 \\ 2.0000 \\ 4.0000 \\ \end{bmatrix}
(D) no solutions of \left\lbrack X \right\rbrack are possible
System of Equations Exercise
For a set of equations \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack B\rbrack, a unique solution exists if
- rank (A) = rank \left( A\ \vdots\ B \right)
- rank (A) = rank \left( A\ \vdots\ B \right) and rank (A) = number of unknowns
- rank (A) = rank \left( A\ \vdots\ B \right) and rank (A) = number of rows of (A).
- Answer
-
B
The rank of matrix
A = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \\ \end{bmatrix} is
- 1
- 2
- 3
- 4
A 3 \times 4 matrix can have a rank of at most
- 3
- 4
- 5
- 12
If \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack C\rbrack has a unique solution, where the order of \lbrack A\rbrack is 3 \times 3, \lbrack X\rbrack is 3 \times 1, then the rank of \lbrack A\rbrack is
- 2
- 3
- 4
- 5
Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist.
\begin{bmatrix} 1 & 2 & 5 \\ 7 & 3 & 9 \\ 8 & 5 & 14 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 8 \\ 19 \\ 27 \\ \end{bmatrix}
- Answer
-
Consistent; Infinite solutions
Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist.
\begin{bmatrix} 1 & 2 & 5 \\ 7 & 3 & 9 \\ 8 & 5 & 14 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 8 \\ 19 \\ 28 \\ \end{bmatrix}
- Answer
-
Inconsistent
Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist.
\begin{bmatrix} 1 & 2 & 5 \\ 7 & 3 & 9 \\ 8 & 5 & 13 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 8 \\ 19 \\ 28 \\ \end{bmatrix}
- Answer
-
Consistent; Unique
The set of equations
\begin{bmatrix} 1 & 2 & 5 \\ 7 & 3 & 9 \\ 8 & 5 & 14 \\ \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 8 \\ 19 \\ 27 \\ \end{bmatrix}
has
- Unique solution
- No solution
- Infinite solutions
- Answer
-
C
For what values of a will the following equation have
x_{1} + x_{2} + x_{3} = 4
x_{3} = 2
\left( a^{2} - 4 \right)x_{1} + x_{3} = a - 2
- Unique solution
- No solution
- Infinite solutions
- Answer
-
If a \neq + 2 \ \text{or} -2, then there will be a unique solution If a = + 2 \ or - 2, then there will be no solution.
Possibility of infinite solutions does not exist.
Find if
\lbrack A\rbrack = \begin{bmatrix} 5 & - 2.5 \\ - 2 & 3 \\ \end{bmatrix} \nonumber
and
\lbrack B\rbrack = \begin{bmatrix} 0.3 & 0.25 \\ 0.2 & 0.5 \\ \end{bmatrix} \nonumber
are inverse of each other.
- Answer
-
Yes
Find if
\lbrack A\rbrack = \begin{bmatrix} 5 & 2.5 \\ 2 & 3 \\ \end{bmatrix} \nonumber
and
lbrack B\rbrack = \begin{bmatrix} 0.3 & - 0.25 \\ 0.2 & 0.5 \\ \end{bmatrix} \nonumber
are inverse of each other.
- Answer
-
No
Find the
- cofactor matrix
- adjoint matrix
of
\left\lbrack A \right\rbrack = \begin{bmatrix} 3 & 4 & 1 \\ 2 & - 7 & - 1 \\ 8 & 1 & 5 \\ \end{bmatrix} \nonumber
- Answer
-
\begin{bmatrix} - 34 & - 18 & 58 \\ - 19 & 7 & 29 \\ 3 & 5 & - 29 \\ \end{bmatrix}\begin{bmatrix} - 34 & - 19 & 3 \\ - 18 & 7 & 5 \\ 58 & 29 & - 29 \\ \end{bmatrix}
Find \lbrack A\rbrack^{- 1} using any method for
\lbrack A\rbrack = \begin{bmatrix} 3 & 4 & 1 \\ 2 & - 7 & - 1 \\ 8 & 1 & 5 \\ \end{bmatrix}
- Answer
-
\left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} 2.931 \times 10^{- 1} & 1.638 \times 10^{- 1} & - 2.586 \times 10^{- 2} \\ 1.552 \times 10^{- 1} & - 6.034 \times 10^{- 2} & - 4.310 \times 10^{- 2} \\ - 5.000 \times 10^{- 1} & - 2.500 \times 10^{- 1} & 2.500 \times 10^{- 1} \\ \end{bmatrix}
Prove that if \lbrack A\rbrack and \lbrack B\rbrack are both invertible and are square matrices of same order, then
(\lbrack A\rbrack\lbrack B\rbrack)^{- 1} = \lbrack B\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1} \nonumber
- Answer
-
\left( \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \right)^{- 1} = \left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1} \nonumber
Let \left\lbrack C \right\rbrack = \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \nonumber
\begin{split} \left\lbrack C \right\rbrack\left\lbrack B \right\rbrack^{- 1} &= \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\\ &= \left\lbrack A \right\rbrack\left\lbrack I \right\rbrack\\ &= \left\lbrack A \right\rbrack \end{split} \nonumber
Again
\left\lbrack C \right\rbrack = \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack
\begin{split} \left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack &= \left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\\ &= \left\lbrack I \right\rbrack\left\lbrack B \right\rbrack\\ &= \left\lbrack B \right\rbrack \end{split} \nonumber
So
\left\lbrack C \right\rbrack\left\lbrack B \right\rbrack^{- 1} = \left\lbrack A \right\rbrack ;\;\;\;\;\;\;\ (1) \nonumber
\left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack = \left\lbrack B \right\rbrack;\;\;\;\;\;\;\ (2) \nonumber
From (1) and (2)
\left\lbrack C \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1}\left\lbrack C \right\rbrack = \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \nonumber
\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \nonumber
\left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack \nonumber
\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack B \right\rbrack \nonumber
\left\lbrack B^{- 1} \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1}\left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack B \right\rbrack^{- 1}\left\lbrack B \right\rbrack \nonumber \left\lbrack B \right\rbrack^{- 1}\left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack I \right\rbrack. \nonumber
What is the inverse of a square diagonal matrix? Does it always exist?
- Answer
-
Hint: Inverse of a square n\timesn diagonal matrix \left\lbrack A \right\rbrack is \left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{a_{22}} & \cdots & 0 \\ 0 & & & \vdots \\ \vdots & \cdots & \cdots & \frac{1}{a_{nn}} \\ \end{bmatrix}
So inverse exists only if a_{ii} \neq 0 for all i.
\lbrack A\rbrack and \lbrack B\rbrack are square matrices. If \lbrack A\rbrack\ \lbrack B\rbrack = \lbrack 0\rbrack and \lbrack A\rbrack is invertible, show\lbrack B\rbrack = 0.
- Answer
-
\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack 0 \right\rbrack \nonumber \left\lbrack A^{- 1} \right\rbrack\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack = \left\lbrack A \right\rbrack^{- 1}\left\lbrack 0 \right\rbrack \nonumber
If \lbrack A\rbrack\ \lbrack B\rbrack\ \lbrack C\rbrack = \lbrack I\rbrack, where \lbrack A\rbrack, \lbrack B\rbrack and \lbrack C\rbrack are of the same size, show that \lbrack B\rbrack is invertible.
- Answer
-
Hint: det({AB}) = det(A)det(B)
Prove if \lbrack B\rbrack is invertible, \lbrack A\rbrack\ \lbrack B\rbrack^{- 1} = \lbrack B\rbrack^{- 1}\lbrack A\rbrack if and only if \lbrack A\rbrack\ \lbrack B\rbrack = \lbrack B\rbrack\lbrack A\rbrack
- Answer
-
Hint: Multiply by \left\lbrack B \right\rbrack^{- 1} on both sides, \left\lbrack A \right\rbrack\left\lbrack B \right\rbrack\left\lbrack B \right\rbrack^{- 1} = \left\lbrack B \right\rbrack^{- 1}\left\lbrack A \right\rbrack\left\lbrack B \right\rbrack^{- 1}
For
\left\lbrack A \right\rbrack = \begin{bmatrix} 10 & - 7 & 0 \\ - 3 & 2.099 & 6 \\ 5 & - 1 & 5 \\ \end{bmatrix}
\left\lbrack A \right\rbrack^{- 1} = \begin{bmatrix} - 0.1099 & - 0.2333 & 0.2799 \\ - 0.2999 & - 0.3332 & 0.3999 \\ 0.04995 & 0.1666 & 6.664 \times 10^{- 5} \\ \end{bmatrix}
Show
{det }\left( A \right) = \frac{1}{{det}\left( A^{- 1} \right)}. \nonumber
For what values of a does the linear system have
\begin{matrix} x + y = 2 \\ 6x + 6y = a \\ \end{matrix} \nonumber
- infinite solutions
- unique solution
- Answer
-
A. 12
B. not possible
Three kids - Jim, Corey and David receive an inheritance of \$2,\$253,\$453. The money is put in three trusts but is not divided equally to begin with. Corey gets three times more than David because Corey made an “A” in Dr. Kaw’s class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pays an interest of 6\%, 8\%, 11\%, respectively. The total interest of all the three trusts combined at the end of the first year is \$190,\$740.57. How much money was invested in each trust? Set the following as equations in a matrix form. Identify the unknowns. Do not solve for the unknowns.
- Answer
-
J + C + D = \$2,\$253,\$453
C = 3D \nonumber
0.06J+0.08C+0.11D = \$190,740.57 \nonumber In matrix form
\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & - 3 \\ 0.06 & 0.08 & 0.11 \\ \end{bmatrix}\begin{bmatrix} J \\ C \\ D \\ \end{bmatrix} = \begin{bmatrix} 2,253,453 \\ 0 \\ 190,740.57 \\ \end{bmatrix} \nonumber
What is the rank of
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 6 & 7 \\ 6 & 10 & 13 \\ \end{bmatrix}? \nonumber
Justify your answer.
- Answer
-
In the above matrix, 2(Row 1) + Row 2 = Row 3. Hence, rank is less than 3. Row 1 and Row 2 are linearly independent. Hence, the rank of the matrix is 2.
What is the rank of
\begin{bmatrix} 1 & 2 & 3 & 6 \\ 4 & 6 & 7 & 17 \\ 6 & 10 & 13 & 29 \\ \end{bmatrix}? \nonumber
Justify your answer.
- Answer
-
The determinant of all the 3 \times 3 sub-matrices is zero. Hence, the rank is less than 3. Determinant of
\begin{bmatrix} 2 & 3 \\ 6 & 7 \\ \end{bmatrix} = - 4 \neq 0. \nonumber
What is the rank of
\begin{bmatrix} 1 & 2 & 3 & 6 \\ 4 & 6 & 7 & 18 \\ 6 & 10 & 13 & 30 \\ \end{bmatrix}? \nonumber
Justify your answer.
- Answer
-
In the above matrix, 2(Row 1) + Row 2 = Row 3. Hence, rank is less than 3 as the 3 rows are linearly dependant. Determinant of
\begin{bmatrix} 2 & 3 \\ 6 & 7 \\ \end{bmatrix} = - 4 \neq 0. \nonumber
Hence, the rank is 2.
How many solutions does the following system of equations have
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 6 & 7 \\ 6 & 10 & 13 \\ \end{bmatrix}\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 17 \\ 29 \\ \end{bmatrix}? \nonumber
Justify your answer.
- Answer
-
Rank of $ A = 2$\ Rank of A|C = 2\ Number of unknowns = 3.\ There are infinite solutions since rank of A is less than the number of unknowns.
How many solutions does the following system of equations have
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 6 & 7 \\ 6 & 10 & 13 \\ \end{bmatrix}\begin{bmatrix} a \\ b \\ c \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 18 \\ 30 \\ \end{bmatrix}? \nonumber
Justify your answer.
- Answer
-
Rank of A = 2\ Rank of A|C = 2\ Number of unknowns = 3.\ There are infinite solutions since rank of A is less than the number of unknowns.
By any scientific method, find the second column of the inverse of
\begin{bmatrix} 1 & 2 & 0 \\ 4 & 5 & 0 \\ 0 & 0 & 13 \\ \end{bmatrix}. \nonumber
- Answer
-
\begin{bmatrix} 1 & 2 & 0 \\ 4 & 5 & 0 \\ 0 & 0 & 13 \\ \end{bmatrix}\begin{bmatrix} X & a_{12}^{'} & X \\ X & a_{22}^{'} & X \\ X & a_{32}^{'} & X \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}
\begin{matrix} a_{12}^{'} + 2a_{22}^{'} = 0 \\ 4a_{12}^{'} + 5a_{22}^{'} = 1 \\ 13a_{32}^{'} = 0 \\ \end{matrix} \nonumber
Simplifying,
\begin{bmatrix} a_{12}^{'} \\ a_{22}^{'} \\ a_{32}^{'} \\ \end{bmatrix} = \begin{bmatrix} 0.667 \\ - 0.333 \\ 0 \\ \end{bmatrix} \nonumber
Just write out the inverse of (no need to show any work)
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 \\ \end{bmatrix} \nonumber
- Answer
-
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{1}{5} \\ \end{bmatrix}
Solve \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack B\rbrack for \lbrack X\rbrack\ if
\lbrack A\rbrack^{- 1} = \begin{bmatrix} 10 & - 7 & 0 \\ 2 & 2 & 5 \\ 2 & 0 & 6 \\ \end{bmatrix} \nonumber
and
\lbrack B\rbrack = \begin{bmatrix} 7 \\ 2.5 \\ 6.012 \\ \end{bmatrix} \nonumber
- Answer
-
\begin{split} \lbrack X\rbrack = \lbrack A\rbrack - 1\lbrack B\rbrack\ &= \begin{bmatrix} 10 & - 7 & 0 \\ 2 & 2 & 5 \\ 2 & 0 & 6 \\ \end{bmatrix}\begin{bmatrix} 7 \\ 2.5 \\ 6.012 \\ \end{bmatrix}\\ &=\begin{bmatrix} 52.5 \\ 49.06 \\ 50.072 \\ \end{bmatrix} \end{split} \nonumber
Let \lbrack A\rbrack\ be a 3 \times 3 matrix. Suppose
\lbrack X\rbrack = \begin{bmatrix} 7 \\ 2.5 \\ 6.012 \\ \end{bmatrix} \nonumber
is a solution to the homogeneous set of equations \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack 0\rbrack (the right hand side is a zero vector of order 3 \times 1). Does \lbrack A\rbrack have an inverse? Justify your answer.
- Answer
-
Given
\lbrack A\rbrack\ \lbrack X\rbrack = \lbrack 0\rbrack
If \lbrack A\rbrack^{- 1}exists, then
\lbrack A\rbrack^{- 1}\ \lbrack A\rbrack\ \lbrack X\rbrack = \lbrack A\rbrack^{- 1}\lbrack 0\rbrack
\lbrack I\rbrack\ \lbrack X\rbrack = \lbrack 0\rbrack
\lbrack X\rbrack = \lbrack 0\rbrack
This contradicts the given value of \lbrack X\rbrack. Hence, \lbrack A\rbrack^{- 1} does not exist.
Is the set of vectors
\overrightarrow{A} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix},\overrightarrow{B} = \begin{bmatrix} 1 \\ 2 \\ 5 \\ \end{bmatrix},\overrightarrow{C} = \begin{bmatrix} 1 \\ 4 \\ 25 \\ \end{bmatrix} \nonumber
linearly independent? Justify your answer.
- Answer
-
The set of vectors are linearly independent.
What is the rank of the set of vectors
\overrightarrow{A} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix},\overrightarrow{B} = \begin{bmatrix} 1 \\ 2 \\ 5 \\ \end{bmatrix},\overrightarrow{C} = \begin{bmatrix} 1 \\ 3 \\ 6 \\ \end{bmatrix}? \nonumber
Justify your answer.
- Answer
-
Since, the 3 vectors are linearly independent as proved above, the rank of the 3 vectors is 3.
What is the rank of
\overrightarrow{A} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix},\overrightarrow{B} = \begin{bmatrix} 2 \\ 2 \\ 4 \\ \end{bmatrix},\overrightarrow{C} = \begin{bmatrix} 3 \\ 3 \\ 5 \\ \end{bmatrix}? \nonumber
Justify your answer.
- Answer
-
By inspection, \overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}. Hence, the 3 vectors are linearly dependent, and the rank is less than 3. Linear combination of\overrightarrow{A}\text{and}\ \overrightarrow{B}, that is, K_{1}\overrightarrow{A} + K_{2}\overrightarrow{B} = 0has only one solution K1= K2 = 0. Therefore, the rank is 2.