4.1E: Vectors and Lines Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercises for 1
solutions
2
Compute \|\mathbf{v}\| if \mathbf{v} equals:
\left[ \begin{array}{r} 2 \\ -1 \\ 2 \end{array} \right] \left[ \begin{array}{r} 1 \\ -1 \\ 2 \end{array} \right] \left[ \begin{array}{r} 1 \\ 0 \\ -1 \end{array} \right] \left[ \begin{array}{r} -1 \\ 0 \\ 2 \end{array} \right] 2\left[ \begin{array}{r} 1 \\ -1 \\ 2 \end{array} \right] -3\left[ \begin{array}{r} 1 \\ 1 \\ 2 \end{array} \right]
- \sqrt{6}
- \sqrt{5}
- 3\sqrt{6}
Find a unit vector in the direction of:
\left[ \begin{array}{r} 7 \\ -1 \\ 5 \end{array} \right] \left[ \begin{array}{r} -2 \\ -1 \\ 2 \end{array} \right]
- \frac{1}{3}\left[ \begin{array}{r} -2 \\ -1 \\ 2 \end{array} \right]
-
Find a unit vector in the direction from
\left[ \begin{array}{r} 3 \\ -1 \\ 4 \end{array} \right] to \left[ \begin{array}{r} 1\\ 3 \\ 5 \end{array} \right]. - If \mathbf{u} \neq \mathbf{0}, for which values of a is a\mathbf{u} a unit vector?
Find the distance between the following pairs of points.
\left[ \begin{array}{r} 3 \\ -1 \\ 0 \end{array} \right] and \left[ \begin{array}{r} 2\\ -1 \\ 1 \end{array} \right] \left[ \begin{array}{r} 2 \\ -1 \\ 2 \end{array} \right] and \left[ \begin{array}{r} 2\\ 0 \\ 1 \end{array} \right] \left[ \begin{array}{r} -3 \\ 5 \\ 2 \end{array} \right] and \left[ \begin{array}{r} 1\\ 3 \\ 3 \end{array} \right] \left[ \begin{array}{r} 4 \\ 0 \\ -2 \end{array} \right] and \left[ \begin{array}{r} 3\\ 2 \\ 0 \end{array} \right]
- \sqrt{2}
- 3
Use vectors to show that the line joining the midpoints of two sides of a triangle is parallel to the third side and half as long.
Let A, B, and C denote the three vertices of a triangle.
- If E is the midpoint of side BC, show that
\longvect{AE} = \frac{1}{2}(\longvect{AB} + \longvect{AC}) \nonumber
- If F is the midpoint of side AC, show that
\longvect{FE} = \frac{1}{2}\longvect{AB} \nonumber
- \longvect{FE} = \longvect{FC} + \longvect{CE} = \frac{1}{2}\longvect{AC} + \frac{1}{2}\longvect{CB} = \frac{1}{2}(\longvect{AC} + \longvect{CB}) = \frac{1}{2}\longvect{AB}
Determine whether \mathbf{u} and \mathbf{v} are parallel in each of the following cases.
- \mathbf{u} = \left[ \begin{array}{r} -3\\ -6\\ 3 \end{array} \right]; \mathbf{v} = \left[ \begin{array}{r} 5\\ 10 \\ -5 \end{array} \right]
- \mathbf{u} = \left[ \begin{array}{r} 3\\ -6\\ 3 \end{array} \right]; \mathbf{v} = \left[ \begin{array}{r} -1\\ 2 \\ -1 \end{array} \right]
- \mathbf{u} = \left[ \begin{array}{r} 1\\ 0\\ 1 \end{array} \right]; \mathbf{v} = \left[ \begin{array}{r} -1\\ 0 \\ 1 \end{array} \right]
- \mathbf{u} = \left[ \begin{array}{r} 2\\ 0\\ -1 \end{array} \right]; \mathbf{v} = \left[ \begin{array}{r} -8\\ 0 \\ 4 \end{array} \right]
- Yes
- Yes
Let \mathbf{p} and \mathbf{q} be the vectors of points P and Q, respectively, and let R be the point whose vector is \mathbf{p} + \mathbf{q}. Express the following in terms of \mathbf{p} and \mathbf{q}.
\longvect{QP} \longvect{QR} \longvect{RP} \longvect{RO} where O is the origin
- \mathbf{p}
- -(\mathbf{p} + \mathbf{q}).
In each case, find \longvect{PQ} and \| \longvect{PQ} \|.
- P(1, -1, 3), Q(3, 1, 0)
- P(2, 0, 1), Q(1, -1, 6)
- P(1, 0, 1), Q(1, 0, -3)
- P(1, -1, 2), Q(1, -1, 2)
- P(1, 0, -3), Q(-1, 0, 3)
- P(3, -1, 6), Q(1, 1, 4)
- \left[ \begin{array}{r} -1\\ -1\\ 5 \end{array} \right], \sqrt{27}
- \left[ \begin{array}{r} 0\\ 0\\ 0 \end{array} \right], 0
- \left[ \begin{array}{r} -2\\ 2\\ 2 \end{array} \right], \sqrt{12}
In each case, find a point Q such that \longvect{PQ} has (i) the same direction as \mathbf{v}; (ii) the opposite direction to \mathbf{v}.
- P(-1,2,2), \mathbf{v} = \left[ \begin{array}{r} 1\\ 3\\ 1 \end{array} \right]
- P(3,0,-1), \mathbf{v} = \left[ \begin{array}{r} 2\\ -1\\ 3 \end{array} \right]
- (i) Q(5, -1, 2) (ii) Q(1, 1, -4).
Let \mathbf{u} = \left[ \begin{array}{r} 3\\ -1\\ 0 \end{array} \right], \mathbf{v} = \left[ \begin{array}{r} 4\\ 0\\ 1 \end{array} \right], and \mathbf{w} = \left[ \begin{array}{r} -1\\ 1\\ 5 \end{array} \right]. In each case, find \mathbf{x} such that:
- 3(2\mathbf{u} + \mathbf{x}) + \mathbf{w} = 2\mathbf{x} - \mathbf{v}
- 2(3\mathbf{v} - \mathbf{x}) = 5\mathbf{w} + \mathbf{u} - 3\mathbf{x}
- \mathbf{x} = \mathbf{u} - 6\mathbf{v} + 5\mathbf{w} = \left[ \begin{array}{r} -26\\ 4\\ 19 \end{array} \right]
Let \mathbf{u} = \left[ \begin{array}{r} 1\\ 1\\ 2 \end{array} \right], \mathbf{v} = \left[ \begin{array}{r} 0\\ 1\\ 2 \end{array} \right], and \mathbf{w} = \left[ \begin{array}{r} 1\\ 0\\ -1 \end{array} \right]. In each case, find numbers a, b, and c such that \mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}.
\mathbf{x} = \left[ \begin{array}{r} 2\\ -1\\ 6 \end{array} \right] \mathbf{x} = \left[ \begin{array}{r} 1\\ 3\\ 0 \end{array} \right]
- \left[ \begin{array}{r} a\\ b\\ c \end{array} \right] = \left[ \begin{array}{r} -5\\ 8\\ 6 \end{array} \right]
Let \mathbf{u} = \left[ \begin{array}{r} 3\\ -1\\ 0 \end{array} \right], \mathbf{v} = \left[ \begin{array}{r} 4\\ 0\\ 1 \end{array} \right], and \mathbf{z} = \left[ \begin{array}{r} 1\\ 1\\ 1 \end{array} \right]. In each case, show that there are no numbers a, b, and c such that:
- a\mathbf{u} + b\mathbf{v} + c\mathbf{z} = \left[ \begin{array}{r} 1\\ 2\\ 1 \end{array} \right]
- a\mathbf{u} + b\mathbf{v} + c\mathbf{z} = \left[ \begin{array}{r} 5\\ 6\\ -1 \end{array} \right]
-
If it holds then \left[ \begin{array}{c} 3a + 4b + c\\ -a + c\\ b + c \end{array} \right] = \left[ \begin{array}{c} x_{1}\\ x_{2}\\ x_{3} \end{array} \right].
\left[ \begin{array}{rrrr} 3 & 4 & 1 & x_{1}\\ -1 & 0 & 1 & x_{2}\\ 0 & 1 & 1 & x_{3} \end{array} \right] \to \left[ \begin{array}{rrrc} 0 & 4 & 4 & x_{1} + 3x_{2}\\ -1 & 0 & 1 & x_{2}\\ 0 & 1 & 1 & x_{3} \end{array} \right]If there is to be a solution then x_{1} + 3x_{2} = 4x_{3} must hold. This is not satisfied.
Given P_{1}(2, 1, -2) and P_{2}(1, -2, 0). Find the coordinates of the point P:
- \frac{1}{5} the way from P_{1} to P_{2}
- \frac{1}{4} the way from P_{2} to P_{1}
- \frac{1}{4}\left[ \begin{array}{c} 5\\ -5\\ -2 \end{array} \right]
Find the two points trisecting the segment between P(2, 3, 5) and Q(8, -6, 2).
Let P_{1}(x_{1}, y_{1}, z_{1}) and P_{2}(x_{2}, y_{2}, z_{2}) be two points with vectors \mathbf{p}_{1} and \mathbf{p}_{2}, respectively. If r and s are positive integers, show that the point P lying \frac{r}{r + s} the way from P_{1} to P_{2} has vector
\mathbf{p} = \left( \frac{s}{r + s} \right)\mathbf{p}_{1} + \left( \frac{r}{r + s} \right)\mathbf{p}_{2} \nonumber
In each case, find the point Q:
- \longvect{PQ} = \left[ \begin{array}{r} 2\\ 0\\ -3 \end{array} \right] and P = P(2,-3,1)
- \longvect{PQ} = \left[ \begin{array}{r} -1\\ 4\\ 7 \end{array} \right] and P = P(1,3,-4)
- Q(0, 7, 3).
Let \mathbf{u} = \left[ \begin{array}{r} 2\\ 0\\ -4 \end{array} \right] and \mathbf{v} = \left[ \begin{array}{r} 2\\ 1\\ -2 \end{array} \right]. In each case find \mathbf{x}:
- 2\mathbf{u} - \| \mathbf{v} \| \mathbf{v} = \frac{3}{2}(\mathbf{u} - 2\mathbf{x})
- 3\mathbf{u} + 7\mathbf{v} = \|\mathbf{u}\|^{2}(2\mathbf{x} + \mathbf{v})
- \mathbf{x} = \frac{1}{40}\left[ \begin{array}{r} -20\\ -13\\ 14 \end{array} \right]
Find all vectors \mathbf{u} that are parallel to \mathbf{v} = \left[ \begin{array}{r} 3\\ -2\\ 1 \end{array} \right] and satisfy \|\mathbf{u}\| = 3\|\mathbf{v}\|.
Let P, Q, and R be the vertices of a parallelogram with adjacent sides PQ and PR. In each case, find the other vertex S.
- P(3, -1, -1), Q(1, -2, 0), R(1, -1, 2)
- P(2, 0, -1), Q(-2, 4, 1), R(3, -1, 0)
- S(-1, 3, 2).
In each case either prove the statement or give an example showing that it is false.
- The zero vector \mathbf{0} is the only vector of length 0.
- If \|\mathbf{v} - \mathbf{w}\| = 0, then \mathbf{v} = \mathbf{w}.
- If \mathbf{v} = -\mathbf{v}, then \mathbf{v} = \mathbf{0}.
- If \|\mathbf{v}\| = \|\mathbf{w}\|, then \mathbf{v} = \mathbf{w}.
- If \|\mathbf{v}\| = \|\mathbf{w}\|, then \mathbf{v} = \pm\mathbf{w}.
- If \mathbf{v} = t\mathbf{w} for some scalar t, then \mathbf{v} and \mathbf{w} have the same direction.
- If \mathbf{v}, \mathbf{w}, and \mathbf{v} + \mathbf{w} are nonzero, and \mathbf{v} and \mathbf{v} + \mathbf{w} parallel, then \mathbf{v} and \mathbf{w} are parallel.
- \|-5\mathbf{v}\| = -5\|\mathbf{v}\|, for all \mathbf{v}.
- If \|\mathbf{v}\| = \| 2\mathbf{v}\|, then \mathbf{v} = \mathbf{0}.
- \|\mathbf{v} + \mathbf{w}\| = \|\mathbf{v}\| + \|\mathbf{w}\|, for all \mathbf{v} and \mathbf{w}.
- T. \|\mathbf{v} - \mathbf{w}\| = 0 implies that \mathbf{v} - \mathbf{w} = \mathbf{0}.
- F. \|\mathbf{v}\| = \| - \mathbf{v}\| for all \mathbf{v} but \mathbf{v} = -\mathbf{v} only holds if \mathbf{v} = \mathbf{0}.
- F. If t < 0 they have the opposite direction.
- F. \| -5\mathbf{v}\| = 5\|\mathbf{v}\| for all \mathbf{v}, so it fails if \mathbf{v} \neq \mathbf{0}.
- F. Take \mathbf{w} = -\mathbf{v} where \mathbf{v} \neq \mathbf{0}.
Find the vector and parametric equations of the following lines.
- The line parallel to \left[ \begin{array}{r} 2\\ -1\\ 0 \end{array} \right] and passing through P(1, -1, 3).
- The line passing through P(3, -1, 4) and Q(1, 0, -1).
- The line passing through P(3, -1, 4) and Q(3, -1, 5).
- The line parallel to \left[ \begin{array}{r} 1\\ 1\\ 1 \end{array} \right] and passing through P(1, 1, 1).
- The line passing through P(1, 0, -3) and parallel to the line with parametric equations x = -1 + 2t, y = 2 - t, and z = 3 + 3t.
- The line passing through P(2, -1, 1) and parallel to the line with parametric equations x = 2 - t, y = 1, and z = t.
- The lines through P(1, 0, 1) that meet the line with vector equation \mathbf{p} = \left[ \begin{array}{r} 1\\ 2\\ 0 \end{array} \right] + t \left[ \begin{array}{r} 2\\ -1\\ 2 \end{array} \right] at points at distance 3 from P_{0}(1, 2, 0).
- \left[ \begin{array}{r} 3\\ -1\\ 4 \end{array} \right] + t \left[ \begin{array}{r} 2\\ -1\\ 5 \end{array} \right]; x = 3 + 2t, y = -1 -t, z = 4 + 5t
- \left[ \begin{array}{r} 1\\ 1\\ 1 \end{array} \right] + t \left[ \begin{array}{r} 1\\ 1\\ 1 \end{array} \right]; x = y = z = 1 + t
- \left[ \begin{array}{r} 2\\ -1\\ 1 \end{array} \right] + t \left[ \begin{array}{r} -1\\ 0\\ 1 \end{array} \right]; x = 2 - t, y = -1, z = 1 + t
In each case, verify that the points P and Q lie on the line.
- \begin{array}[t]{ll} x = 3 - 4t & P(-1,3,0), Q(11,0,3) \\ y = 2 + t & \\ z = 1 - t & \end{array}
- \begin{array}[t]{ll} x = 4 - t & P(2,3,-3), Q(-1,3,-9) \\ y = 3 & \\ z = 1 - 2t & \end{array}
- P corresponds to t = 2; Q corresponds to t = 5.
Find the point of intersection (if any) of the following pairs of lines.
- \begin{array}[t]{ll} x = 3 + t & x = 4 + 2s \\ y = 1 - 2t & y = 6 + 3s \\ z = 3 + 3t & z = 1 + s \end{array}
- \begin{array}{ll} x = 1 - t & x = 2s \\ y = 2 + 2t & y = 1 + s \\ z = -1 + 3t & z = 3 \end{array}
- \left[ \begin{array}{c} x\\ y\\ z \end{array} \right] = \left[ \begin{array}{r} 3\\ -1\\ 2 \end{array} \right] + t \left[ \begin{array}{r} 1\\ 1\\ -1 \end{array} \right]
\left[ \begin{array}{c} x\\ y\\ z \end{array} \right] = \left[ \begin{array}{r} 1\\ 1\\ -2 \end{array} \right] + s \left[ \begin{array}{r} 2\\ 0\\ 3 \end{array} \right]
- \left[ \begin{array}{c} x\\ y\\ z \end{array} \right] = \left[ \begin{array}{r} 4\\ -1\\ 5 \end{array} \right] + t \left[ \begin{array}{r} 1\\ 0\\ 1 \end{array} \right]
\left[ \begin{array}{c} x\\ y\\ z \end{array} \right] = \left[ \begin{array}{r} 2\\ -7\\ 12 \end{array} \right] + s \left[ \begin{array}{r} 0\\ -2\\ 3 \end{array} \right]
- No intersection
- P(2, -1, 3); t = -2, s = -3
Show that if a line passes through the origin, the vectors of points on the line are all scalar multiples of some fixed nonzero vector.
Show that every line parallel to the z axis has parametric equations x = x_{0}, y = y_{0}, z = t for some fixed numbers x_{0} and y_{0}.
Let \mathbf{d} = \left[ \begin{array}{c} a\\ b\\ c \end{array} \right] be a vector where a, b, and c are all nonzero. Show that the equations of the line through P_{0}(x_{0}, y_{0}, z_{0}) with direction vector \mathbf{d} can be written in the form
\frac{x - x_{0}}{a} = \frac{y - y_{0}}{b} = \frac{z -z_{0}}{c} \nonumber
This is called the symmetric form of the equations.
A parallelogram has sides AB, BC, CD, and DA. Given A(1, -1, 2), C(2, 1, 0), and the midpoint M(1, 0, -3) of AB, find \longvect{BD}.
Find all points C on the line through A(1, -1, 2) and B = (2, 0, 1) such that \| \longvect{AC} \| = 2 \| \longvect{BC} \|.
P(3, 1, 0) or P(\frac{5}{3}, \frac{-1}{3}, \frac{4}{3})
Let A, B, C, D, E, and F be the vertices of a regular hexagon, taken in order. Show that \longvect{AB} + \longvect{AC} + \longvect{AD} + \longvect{AE} + \longvect{AF} = 3\longvect{AD}.
- Let P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, and P_{6} be six points equally spaced on a circle with centre C. Show that
\longvect{CP}_{1} + \longvect{CP}_{2} + \longvect{CP}_{3} + \longvect{CP}_{4} + \longvect{CP}_{5} + \longvect{CP}_{6} = \mathbf{0} \nonumber
- Show that the conclusion in part (a) holds for any even set of points evenly spaced on the circle.
- Show that the conclusion in part (a) holds for three points.
- Do you think it works for any finite set of points evenly spaced around the circle?
- \longvect{CP}_{k} = -\longvect{CP}_{n+k} if 1 \leq k \leq n, where there are 2n points.
Consider a quadrilateral with vertices A, B, C, and D in order (as shown in the diagram).
If the diagonals AC and BD bisect each other, show that the quadrilateral is a parallelogram. (This is the converse of Example [exa:011062].) [Hint: Let E be the intersection of the diagonals. Show that \longvect{AB} = \longvect{DC} by writing \longvect{AB} = \longvect{AE} + \longvect{EB}.]
Consider the parallelogram ABCD (see diagram), and let E be the midpoint of side AD.
Show that BE and AC trisect each other; that is, show that the intersection point is one-third of the way from E to B and from A to C. [Hint: If F is one-third of the way from A to C, show that 2\longvect{EF} = \longvect{FB} and argue as in Example [exa:011062].]
\longvect{DA} = 2\longvect{EA} and 2\longvect{AF} = \longvect{FC}, so 2\longvect{EF} = 2(\longvect{EF} + \longvect{AF}) = \longvect{DA} + \longvect{FC} = \longvect{CB} + \longvect{FC} = \longvect{FC} + \longvect{CB} = \longvect{FB}. Hence \longvect{EF} = \frac{1}{2}\longvect{FB}. So F is the trisection point of both AC and EB.
The line from a vertex of a triangle to the midpoint of the opposite side is called a median of the triangle. If the vertices of a triangle have vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}, show that the point on each median that is \frac{1}{3} the way from the midpoint to the vertex has vector \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}). Conclude that the point C with vector \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) lies on all three medians. This point C is called the centroid of the triangle.
Given four noncoplanar points in space, the figure with these points as vertices is called a tetrahedron. The line from a vertex through the centroid (see previous exercise) of the triangle formed by the remaining vertices is called a median of the tetrahedron. If \mathbf{u}, \mathbf{v}, \mathbf{w}, and \mathbf{x} are the vectors of the four vertices, show that the point on a median one-fourth the way from the centroid to the vertex has vector \frac{1}{4}(\mathbf{u} + \mathbf{v} + \mathbf{w} + \mathbf{x}). Conclude that the four medians are concurrent.