Skip to main content
Mathematics LibreTexts

12.3: Mathematical Induction

  • Page ID
    58780
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Suppose one is presented with the following sequence of equations: \begin{align*} 1 &=1 \\ 1 + 3 &=4 \\ 1 + 3 + 5 &=9 \\ 1 + 3 + 5 + 7 &=16 \\ 1 + 3 + 5 + 7 + 9 &=25 \end{align*} It is clear that there is a pattern. The numbers on the right side of the equations are the squares $1^{2}$, $2^{2}$, $3^{2}$, $4^{2}$, and $5^{2}$ and, in the equation with $n^{2}$ on the right side, the left side is the sum of the first $n$ odd numbers. The odd numbers are \begin{align*} 1 &= 2 \cdot 1 -1 \\ 3 &= 2 \cdot 2 -1 \\ 5 &= 2 \cdot 3 -1 \\ 7 &= 2 \cdot 4 -1 \\ 9 &= 2 \cdot 5 -1 \end{align*} and from this it is clear that the $n$th odd number is $2n - 1$. Hence, at least for $n = 1$, $2$, $3$, $4$, or $5$, the following is true: \begin{equation}\label{eq:induction} 1 + 3 + \cdots + (2n-1) = n^2 \tag{$S_n$} \end{equation} The question arises whether the statement \ref{eq:induction} is true for \textit{every} $n$. There is no hope of separately verifying all these statements because there are infinitely many of them. A more subtle approach is required. The idea is as follows: Suppose it is verified that the statement $S_{n+1}$ will be true whenever $S_{n}$ is true. That is, suppose we prove that, \textit{if} $S_{n}$ is true, then it necessarily follows that $S_{n+1}$ is also true. Then, if we can show that $S_{1}$ is true, it follows that $S_{2}$ is true, and from this that $S_{3}$ is true, hence that $S_{4}$ is true, and so on and on. This is the principle of induction. To express it more compactly, it is useful to have a short way to express the assertion ``If $S_{n}$ is true, then $S_{n+1}$ is true.'' As in Appendix \ref{chap:appbproofs}, we write this assertion as \begin{equation*} S_n \Rightarrow S_{n+1} \end{equation*} and read it as `` $S_{n}$ implies $S_{n+1}$.'' We can now state the principle of mathematical induction. \newpage \begin{theorem*}{The Principle of Mathematical Induction}{034881} Suppose $S_{n}$ is a statement about the natural number $n$ for each $n = 1, 2, 3, \dots$.\index{induction!mathematical induction}\index{mathematical induction} Suppose further that: \begin{enumerate} \item $S_{1}$ is true. \item $S_{n} \Rightarrow S_{n+1}$ for every $n \geq 1$. \end{enumerate} Then $S_{n}$ is true for every $n \geq 1$. \end{theorem*} \noindent This is one of the most useful techniques in all of mathematics. It applies in a wide variety of situations, as the following examples illustrate. \begin{example}{}{034897} Show that $1 + 2 + \dots + n = \frac{1}{2}n(n + 1)$ for $n \geq 1$. \begin{solution} Let $S_{n}$ be the statement: $1 + 2 + \dots + n = \frac{1}{2}n(n + 1)$ for $n \geq 1$. We apply induction. \begin{enumerate} \item $S_{1}$ is true. The statement $S_{1}$ is $1 = \frac{1}{2}1(1 + 1)$, which is true. \item $S_{n} \Rightarrow S_{n+1}$. We \textit{assume} that $S_{n}$ is true for some $n \geq 1$---that is, that \begin{equation*} 1+ 2 + \cdots + n = \frac{1}{2} n(n+1) \end{equation*} \end{enumerate} We must prove that the statement \begin{equation*} S_{n+1} : 1 + 2 + \cdots + (n+1) = \frac{1}{2} (n+1)(n+2) \end{equation*} is also true, and we are entitled to use $S_{n}$ to do so. Now the left side of $S_{n+1}$ is the sum of the first $n + 1$ positive integers. Hence the second-to-last term is $n$, so we can write \begin{align*} 1 + 2 + \cdots + (n+1) & = (1 + 2+ \cdots + n)+(n+1) \\ &= \frac{1}{2} n(n+1) + (n+1) \quad \mbox{using } S_n \\ & = \frac{1}{2}(n+1)(n+2) \end{align*} This shows that $S_{n+1}$ is true and so completes the induction. \end{solution} \end{example} In the verification that $S_{n} \Rightarrow S_{n+1}$, we \textit{assume} that $S_{n}$ is true and use it to deduce that $S_{n+1}$ is true. The assumption that $S_{n}$ is true is sometimes called the \textbf{induction hypothesis}\index{induction hypothesis}. \begin{example}{}{034928} If $x$ is any number such that $x \neq 1$, show that $1 + x + x^2 + \cdots + x^n = \frac{x^{n+1}-1}{x-1}$ for $n \geq 1$. \begin{solution} Let $S_{n}$ be the statement: $1 + x + x^2 + \cdots + x^n = \frac{x^{n+1}-1}{x-1}$. \begin{enumerate} \item $S_{1}$ is true. $S_{1}$ reads $ 1+x = \frac{x^2 -1}{x-1}$, which is true because $x^{2} - 1 = (x - 1)(x + 1)$. \item $S_{n} \Rightarrow S_{n+1}$. Assume the truth of $S_{n}$ : $1 + x + x^{2} + \dots + x^n = \frac{x^{n+1}-1}{x-1}$. \end{enumerate} We must \textit{deduce} from this the truth of $S_{n+1}$: $1 + x + x^{2} + \cdot + x^{n+1} = \frac{x^{n+2}-1}{x-1}$. Starting with the left side of $S_{n+1}$ and using the induction hypothesis, we find \begin{align*} 1 +x + x^2 + \cdots + x^{n+1} & = (1 + x + x^2 + \cdots + x^n) + x^{n+1} \\ &= \frac{x^{n+1} -1 }{x-1} + x^{n+1} \\ &= \frac{x^{n+1} -1 + x^{n+1}(x-1)}{x-1} \\ &= \frac{x^{n+2}-1}{x-1} \end{align*} This shows that $S_{n+1}$ is true and so completes the induction. \end{solution} \end{example} Both of these examples involve formulas for a certain sum, and it is often convenient to use summation notation. For example, $ \sum_{k=1}^{n} (2k-1)$ means that in the expression $(2k - 1)$, $k$ is to be given the values $k = 1, k = 2, k = 3, \dots , k = n$, and then the resulting $n$ numbers are to be added. The same thing applies to other expressions involving $k$. For example, \begin{align*} \sum_{k=1}^{n} k^3 &=1^3 + 2^3 + \cdots + n^3 \\ \sum_{k=1}^{5} (3k-1) &= (3 \cdot 1 -1) + (3 \cdot 2 - 1) + (3 \cdot 3 - 1) +(3 \cdot 4 - 1) + (3 \cdot 5 - 1) \end{align*} The next example involves this notation. \begin{example}{}{034966} Show that $\sum_{k=1}^{n} (3k^2-k) = n^2(n+1)$ for each $n \geq 1$. \begin{solution} Let $S_{n}$ be the statement: $\sum_{k=1}^{n} (3k^2-k) = n^2(n+1)$. \begin{enumerate} \item $S_{1}$ is true. $S_{1}$ reads $(3 \cdot 1^2 - 1) = 1^{2}(1 + 1)$, which is true. \item $S_{n} \Rightarrow S_{n+1}$. Assume that $S_{n}$ is true. We must prove $S_{n+1}$: \begin{align*} \sum_{k=1}^{n+1} (3k^2-k) &= \sum_{k=1}^{n}(3k^2-k) + [3(n+1)^2 - (n+1)] \\ & = n^2(n+1)+(n+1)[3(n+1)-1] \tag{using $S_n$} \\ & = (n+1)[n^2 + 3n+2]\\ & = (n+1)[(n+1)(n+2)] \\ & = (n+1)^2(n+2) \end{align*} \end{enumerate} This proves that $S_{n+1}$ is true. \end{solution} \end{example} \noindent We now turn to examples wherein induction is used to prove propositions that do not involve sums. \begin{example}{}{034992} Show that $7^n + 2$ is a multiple of $3$ for all $n \geq 1$. \begin{solution} \begin{enumerate} \item $S_{1}$ is true: $7^1 + 2 = 9$ is a multiple of $3$. \item $S_{n} \Rightarrow S_{n+1}$. Assume that $7^n + 2$ is a multiple of $3$ for some $n \geq 1$; say, $7^n + 2 = 3m$ for some integer $m$. Then \begin{equation*} 7^{n+1} +2 = 7(7^n) +2 = 7(3m-2)+2 = 21m-12 = 3(7m-4) \end{equation*} so $7^{n+1} + 2$ is also a multiple of $3$. This proves that $S_{n+1}$ is true. \end{enumerate} \end{solution} \end{example} In all the foregoing examples, we have used the principle of induction starting at $1$; that is, we have verified that $S_{1}$ is true and that $S_{n} \Rightarrow S_{n+1}$ for each $n \geq 1$, and then we have concluded that $S_{n}$ is true for every $n \geq 1$. But there is nothing special about $1$ here. If $m$ is some fixed integer and we verify that \begin{enumerate} \item $S_{m}$ is true. \item $S_{n} \Rightarrow S_{n+1}$ for every $n \geq m$. \end{enumerate} \noindent then it follows that $S_{n}$ is true for every $n \geq m$. This ``extended'' induction principle is just as plausible as the induction principle and can, in fact, be proved by induction. The next example will illustrate it. Recall that if $n$ is a positive integer, the number $n!$ (which is read ``$n$-factorial'') is the product \begin{equation*} n! = n(n-1)(n-2)\cdots 3 \cdot 2 \cdot 1 \end{equation*} of all the numbers from $n$ to $1$. Thus $2! = 2$, $3! = 6$, and so on. \begin{example}{}{035027} Show that $2^n < n!$ for all $n \geq 4$. \begin{solution} Observe that $2^n < n!$ is actually false if $n = 1, 2, 3$. \begin{enumerate} \item $S_{4}$ is true. $2^4 = 16 < 24 = 4!$. \item $S_{n} \Rightarrow S_{n+1}$ if $n \geq 4$. Assume that $S_{n}$ is true; that is, $2^n < n!$. Then \begin{equation*} \begin{array}{rcll} 2^{n+1} & = &2 \cdot 2^n &\\ & < &2 \cdot n! & \mbox{because } 2^n < n! \\ & < &(n+1)n! & \mbox{because } 2<n+1\\>< 2^{n}$ \end{ex} \begin{ex} For any integer $m > 0$, $m!n! < (m + n)!$ \end{ex} \begin{ex} $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n}-1$ \begin{sol} $2\sqrt{n} - 1 + \frac{1}{\sqrt{n+1}} = \frac{2\sqrt{n^2+n}+1}{\sqrt{n+1}} - 1 < \frac{2(n+1)}{\sqrt{n+1}}-1 = 2\sqrt{n+1}-1$ \end{sol} \end{ex} \begin{ex} $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \geq \sqrt{n}$ \end{ex} \begin{ex} $n^{3} + (n + 1)^{3} + (n + 2)^{3}$ is a multiple of $9$. \end{ex} \begin{ex} $5n + 3$ is a multiple of $4$. \end{ex} \begin{ex} $n^{3} - n$ is a multiple of $3$. \begin{sol} If $n^{3} -n = 3k$, then $(n + 1)^{3} - (n + 1) = 3k + 3n^{2} + 3n = 3(k + n^{2} + n)$ \end{sol} \end{ex} \begin{ex} $3^{2n+1} + 2^{n+2}$ is a multiple of $7$. \end{ex} \begin{ex} Let $B_{n} = 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n$! Find a formula for $B_{n}$ and prove it. \begin{sol} $B_{n} = (n + 1)! - 1$ \end{sol} \end{ex} \begin{ex} Let \begin{equation*} A_n = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})\cdots (1-\frac{1}{n}) \end{equation*} Find a formula for $A_n$ and prove it. \end{ex} \begin{ex} Suppose $S_{n}$ is a statement about $n$ for each $n \geq 1$. Explain what must be done to prove that $S_{n}$ is true for all $n \geq 1$ if it is known that: \begin{enumerate}[label={\alph*.}] \item $S_{n} \Rightarrow S_{n+2}$ for each $n \geq 1$. \item $S_{n} \Rightarrow S_{n+8}$ for each $n \geq 1$. \item $S_{n} \Rightarrow S_{n+1}$ for each $n \geq 10$. \item Both $S_{n}$ and $S_{n+1} \Rightarrow S_{n+2}$ for each $n \geq 1$. \end{enumerate} \begin{sol} \begin{enumerate}[label={\alph*.}] \setcounter{enumi}{1} \item Verify each of $S_{1}, S_{2}, \dots, S_{8}$. \end{enumerate} \end{sol} \end{ex} \begin{ex} If $S_{n}$ is a statement for each $n \geq 1$, argue that $S_{n}$ is true for all $n \geq 1$ if it is known that the following two conditions hold: \begin{enumerate} \item $S_{n} \Rightarrow S_{n-1}$ for each $n \geq 2$. \item $S_{n}$ is true for infinitely many values of $n$. \end{enumerate} \end{ex} \begin{ex} Suppose a sequence $a_{1}, a_{2}, \dots$ of numbers is given that satisfies: \begin{enumerate} \item $a_{1} = 2$. \item $a_{n+1} = 2a_{n}$ for each $n \geq 1$. Formulate a theorem giving $a_{n}$ in terms of $n$, and prove your result by induction. \end{enumerate} \end{ex} \begin{ex} Suppose a sequence $a_{1}, a_{2}, \dots$ of numbers is given that satisfies: \begin{enumerate} \item $a_{1} = b$. \item $a_{n+1} = ca_{n} + b$ for $n = 1, 2, 3, \dots$. Formulate a theorem giving $a_{n}$ in terms of $n$, and prove your result by induction. \end{enumerate} \end{ex} \begin{ex} \begin{enumerate}[label={\alph*.}] \item Show that $n^{2} \leq 2^{n}$ for all $n \geq 4$. \item Show that $n^{3} \leq 2^{n}$ for all $n \geq 10$. \end{enumerate} \end{ex} \end{multicols}

    This page titled 12.3: Mathematical Induction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by W. Keith Nicholson (Lyryx Learning Inc.) via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?