Skip to main content
Mathematics LibreTexts

28.2: Four Fundamental Subspaces

  • Page ID
    69435
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The four fundamental subspaces

    • Columnspace, \(\mathcal{C}(A)\)
    • Nullspace, \(\mathcal{N}(A)\)
    • Rowspaces, \(R(A)\)
      • All linear combinations of rows
      • All the linear combinations of the colums of \(A^\top\), \(\mathcal{C}(A^\top)\)
    • Nullspace of \(A^\top\), \(\mathcal{N}(A^\top)\) (the left nullspace of \(A\))

    Where are these spaces for a \(m \times n\) matrix \(A\)?

    • \(\mathcal{R}(A)\) is in \(R^n\)
    • \(\mathcal{N}(A)\) is in \(R^n\)
    • \(\mathcal{C}(A)\) is in \(R^m\)
    • \(\mathcal{N}(A^\top)\) is in \(R^m\)

    Calculating basis and dimension

    For \(\mathcal{R}(A)\)

    • If \(A\) undergoes row reduction to row echelon form \(B\), then \(\mathcal{C}(B)\neq \mathcal{C}(A)\), but \(\mathcal{R}(B) = \mathcal{R}(A)\) (or \(\mathcal{C}(B^\top) = \mathcal{C}(A^\top)\))
    • A basis for the rowspace of \(A\) (or \(B\)) is the first \(r\) rows of \(B\)
      • So we row reduce \(A\) and take the pivot rows and transpose them
    • The dimension is also equal to the rank \(r\)

    For \(\mathcal{N}(A)\)

    • The bases are the special solutions (one for every free variable, \(n−r\))
    • The dimension is \(n−r\)

    For \(\mathcal{C}(A) = \mathcal{R}(A^\top)\)

    • Apply the row reduction on the transpose \(A^{\top}\).
    • The dimension is the rank \(r\)

    For \(\mathcal{N}(A^\top)\)

    • It is also called the left nullspace, because it ends up on the left (as seen below)
    • Here we have \(A^\top y = 0\)
      • \(y^\top(A^\top)^\top = 0^\top\)
      • \(y^\top A = 0^\top\)
      • This is (again) the special solutions for \(A^{\top}\) (after row reduction)
    • The dimension is \(m−r\)

    This page titled 28.2: Four Fundamental Subspaces is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Dirk Colbry via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?