Skip to main content
Mathematics LibreTexts

40.3: Invertible Systems

  • Page ID
    70543
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    An invertible system has a square \(A\) that is invertible such that all the following properties are true:

    1. \( A^{-1}A = AA^{-1} = I \)
    2. \((A^{-1})^{-1} = A\)
    3. \((cA)^{-1} = \frac{1}{c}A^{-1}\)
    4. \((AB)^{-1} = B^{-1}A^{-1}\)
    5. \((A^n)^{-1} = (A^{-1})^n\)
    6. \((A^\top)^{-1} = (A^{-1})^\top\) here \(A^\top\) is the transpose of the matrix \(A\).

    Consider the following system of equations:

    \[\begin{split}\begin{bmatrix}5&-2&2 \\ 4 & -3 &4 \\ 4& -6 &7 \end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}1\\2\\3\end{bmatrix}\end{split} \nonumber \]

    import numpy as np
    import sympy as sym
    A = np.matrix([[5, -2, 2], [4, -3, 4], [4,-6,7]])
    b = np.matrix([[1],[2],[3]])
    display(sym.Matrix(A))
    display(sym.Matrix(b))

    Iterative algorithms (Gauss-Seidel and Jacobian):

    • They may require many iterations
    • Gauss-Seidel is faster than Jacobian
    • They do not work for all square invertible systems.

    Non-iterative algorithms:

    • Gauss elimination (rref)
    • LU decomposition
    • Find the inverse of the matrix \(A\) and \(x=A^{-1}b\)
    Do This

    Pick at least two methods to solve the system of equations and compare them.

    #put your answer here

    This page titled 40.3: Invertible Systems is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Dirk Colbry via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?