Skip to main content
Mathematics LibreTexts

3.8: Supplements - Subspaces

  • Page ID
    45605
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Subspace

    A subspace is a subset of a vector space that is itself a vector space. The simplest example is a line through the origin in the plane. For the line is definitely a subset and if we add any two vectors on the line we remain on the line and if we multiply any vector on the line by a scalar we remain on the line. The same could be said for a line or plane through the origin in 3 space. As we shall be travelling in spaces with many many dimensions it pays to have a general definition.

    Definition: Subspace

    A subset \(S\) of a vector space \(V\) is a subspace of \(V\) when

    • if \(x\) and \(y\) belong to \(S\) then so does \(x+y\)
    • if \(x\) belongs to \(S\) and \(t\) is real then \(tx\) belong to \(S\)

    As these are oftentimes unwieldy objects it pays to look for a handful of vectors from which the entire subset may be generated. For example, the set of \(x\) for which \(x_{1}+x_{2}+x_{3}+x_{4} = 0\) constitutes a subspace of \(\mathbb{R}^{4}\). Can you 'see' this set? Do you 'see' that

    \[\begin{pmatrix} {-1}\\ {1}\\ {0}\\ {0} \end{pmatrix} \nonumber\]

    and

    \[\begin{pmatrix} {-1}\\ {0}\\ {1}\\ {0} \end{pmatrix} \nonumber\]

    and

    \[\begin{pmatrix} {-1}\\ {0}\\ {0}\\ {1} \end{pmatrix} \nonumber\]

    not only belong to a set but in fact generate all possible elements? More precisely, we say that these vectors span the subspace of all possible solutions.

    Definition: Span

    A finite collection \(\{s_{1}, s_{2}, \cdots, s_{n}\}\) of vectors in the subspace \(S\) is said to span \(S\) if each element of \(S\) can be written as a linear combination of these vectors. That is, if for each \(s \in S\) there exist nn reals \(\{x_{1}, x_{2}, \cdots, x_{n}\}\) such that \(s = x_{1}s_{1}+x_{2}s_{2}+ \cdots +x_{n}s_{n}\).

    When attempting to generate a subspace as the span of a handful of vectors it is natural to ask what is the fewest number possible. The notion of linear independence helps us clarify this issue.

    Definition: Linear Independence

    A finite collection \(\{s_{1}, s_{2}, \cdots, s_{n}\}\) of vectors is said to be linearly independent when the only reals, \(\{x_{1}, x_{2}, \cdots, x_{n}\}\) for which \(x_{1}+x_{2} + \cdots+x_{n} = 0\) are \(x_{1} = x_{2} = \cdots = x_{n} = 0\) In other words, when the null space of the matrix whose columns are \(\{s_{1}, s_{2}, \cdots, s_{n}\}\) contains only the zero vector.

    Combining these definitions, we arrive at the precise notion of a 'generating set.'

    Definition: Basis

    Any linearly independent spanning set of a subspace \(S\) is called a basis of \(S\)

    Though a subspace may have many bases they all have one thing in common:

    Definition: Dimension

    The dimension of a subspace is the number of elements in its basis.


    This page titled 3.8: Supplements - Subspaces is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source content that was edited to the style and standards of the LibreTexts platform.