10.1: Overview
- Page ID
- 21861
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The matrix exponential is a powerful means for representing the solution to nn linear, constant coefficient, differential equations. The initial value problem for such a system may be written
\[x′(t) = Ax(t) \nonumber\]
\[x(0) = x_{0} \nonumber\]
where \(A\) is the n-by-n matrix of coefficients. By analogy to the 1-by-1 case we might expect
\[x(t) = e^{At}u \nonumber\]
to hold. Our expectations are granted if we properly define \(e^{At}\). Do you see why simply exponentiating each element of \(At\) will no suffice?
There are at least 4 distinct (but of course equivalent) approaches to properly defining \(e^{At}\). The first two are natural analogs of the single variable case while the latter two make use of heavier matrix algebra machinery.
- The Matrix Exponential as a Limit of Powers
- The Matrix Exponential as a sum of Powers
- The Matrix Exponential via the Laplace Transform
- The Matrix Exponential via Eigenvalues and Eigenvectors
Please visit each of these modules to see the definition and a number of examples.
For a concrete application of these methods to a real dynamical system, please visit the Mass-Spring-Damper-module.
Regardless of the approach, the matrix exponential may be shown to obey the 3 lovely properties
- \(\frac{d}{dt}(e^{At}) = Ae^{At} = e^{At}A\)
- \(e^{A(t_{1}+t_{2})} = e^{At_{1}}e^{At_{2}}\)
- \(e^{At}\) is nonsingular and \((e^{At})^{-1} = e^{-(At)}\)
Let us confirm each of these on the suite of examples used in the submodules.
If
\[A = \begin{pmatrix} {1}&{0}\\ {0}&{2} \end{pmatrix} \nonumber\]
then
\[e^{At} = \begin{pmatrix} {e^t}&{0}\\ {0}&{e^{2t}} \end{pmatrix} \nonumber\]
- \(\frac{d}{dt}(e^{At}) = \begin{pmatrix} {e^t}&{0}\\ {0}&{e^{2t}} \end{pmatrix} = \begin{pmatrix} {1}&{0}\\ {0}&{2} \end{pmatrix} \begin{pmatrix} {e^t}&{0}\\ {0}&{e^{2t}} \end{pmatrix}\)
- \(\begin{pmatrix} {e^{t_{1}+t_{2}}}&{0}\\ {0}&{e^{2t_{1}+2t_{2}}} \end{pmatrix} = \begin{pmatrix} {e^{t_{1}}e^{t_{2}}}&{0}\\ {0}&{e^{2t_{1}}e^{2t_{2}}} \end{pmatrix} = \begin{pmatrix} {e^{t_{1}}}&{0}\\ {0}&{e^{2t_{1}}} \end{pmatrix} \begin{pmatrix} {e^{t_{2}}}&{0}\\ {0}&{e^{2t_{2}}} \end{pmatrix}\)
- \((e^{At})^{-1} = \begin{pmatrix} {e^{-t}}&{0}\\ {0}&{e^{-(2t)}} \end{pmatrix} = e^{-(At)}\)
If
\[A = \begin{pmatrix} {0}&{1}\\ {-1}&{0} \end{pmatrix} \nonumber\]
then
\[e^{At} = \begin{pmatrix} {\cos(t)}&{\sin(t)}\\ {-\sin(t)}&{\cos(t)} \end{pmatrix} \nonumber\]
- \(\frac{d}{dt}(e^{At}) = \begin{pmatrix} {-\sin(t)}&{\cos(t)}\\ {-\cos(t)}&{-\sin(t)} \end{pmatrix}\) and \(Ae^{At} = \begin{pmatrix} {-\sin(t)}&{\cos(t)}\\ {-\cos(t)}&{-\sin(t)} \end{pmatrix}\)
- You will recognize this statement as a basic trig identity \(\begin{pmatrix} {\cos(t_{1}+t_{2})}&{\sin(t_{1}+t_{2})}\\ {-\sin(t_{1}+t_{2})}&{\cos(t_{1}+t_{2})} \end{pmatrix} = \begin{pmatrix} {\cos(t_{1})}&{\sin(t_{1})}\\ {-\sin(t_{1})}&{\cos(t_{1})} \end{pmatrix} \begin{pmatrix} {\cos(t_{2})}&{\sin(t_{2})}\\ {-\sin(t_{2})}&{\cos(t_{2})} \end{pmatrix}\)
- \((e^{At})^{-1} = \begin{pmatrix} {\cos(t)}&{-\sin(t)}\\ {\sin(t)}&{\cos(t)} \end{pmatrix} = \begin{pmatrix} {\cos(-t)}&{-\sin(-t)}\\ {\sin(-t)}&{\cos(-t)} \end{pmatrix} = e^{-(At)}\)
If
\[A = \begin{pmatrix} {0}&{1}\\ {0}&{0} \end{pmatrix} \nonumber\]
then
\[e^{At} = \begin{pmatrix} {1}&{t}\\ {0}&{1} \end{pmatrix} \nonumber\]
- \(\frac{d}{dt}(e^{At}) = \begin{pmatrix} {0}&{1}\\ {0}&{0} \end{pmatrix} = Ae^{At}\)
- \(\begin{pmatrix} {1}&{t_{1}+t_{2}}\\ {0}&{1} \end{pmatrix} = \begin{pmatrix} {1}&{t_{1}}\\ {0}&{1} \end{pmatrix} \begin{pmatrix} {1}&{t_{2}}\\ {0}&{1} \end{pmatrix}\)
- \(\begin{pmatrix} {1}&{t}\\ {0}&{1} \end{pmatrix}^{-1} = \begin{pmatrix} {1}&{-t}\\ {0}&{1} \end{pmatrix} = e^{-At}\)