8: Appendix A Sage Reference
- Page ID
- 214183
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We have introduced a number of Sage commands throughout the text, and the most important ones are summarized here in a single place.
Accessing Sage
In addition to the Sage cellls included throughout the book, there are a number of ways to access Sage.
- There is a freely available Sage cell at sagecell.sagemath.org.
- You can save your Sage work by creating an account at cocalc.com and working in a Sage worksheet.
- There is a page of Sage cells at gvsu.edu/s/0Ng. The results obtained from evaluating one cell are available in other cells on that page. However, you will lose any work once the page is reloaded.
Creating matrices
There are a couple of ways to create matrices. For instance, the matrix
\[\left[\begin{array}{cccc}
-2 & 3 & 0 & 4 \\
1 & -2 & 1 & -3 \\
0 & 2 & 3 & 0
\end{array}\right]\]
can be created in either of the two following ways.
matrix(3, 4, [-2, 3, 0, 4,
1,-2, 1,-3,
0, 2, 3, 0])
matrix([ [-2, 3, 0, 4],
[ 1,-2, 1,-3],
[ 0, 2, 3, 0])
Be aware that Sage can treat mathematically equivalent matrices in different ways depending on how they are entered. For instance, the matrix
matrix([ [1, 2],
[2, 1] ])
has integer entries while
matrix([ [1.0, 2.0],
[2.0, 1.0] ])
has floating point entries.
If you would like the entries to be considered as floating point numbers, you can include RDF in the definition of the matrix.
matrix(RDF, [ [1, 2],
[2, 1] ])
Special matrices
The identity matrix can be created with
identity_matrix(4)
A diagonal matrix can be created from a list of its diagonal entries. For instance,
diagonal_matrix([3,-4,2])
Reduced row echelon form
The reduced row echelon form of a matrix can be obtained using the rref() function. For instance,
A = matrix([ [1,2], [2,1] ]) A.rref()
Vectors
A vector is defined by listing its components.
v = vector([3,-1,2])
Addition
The + operator performs vector and matrix addition.
v = vector([2,1]) w = vector([-3,2]) print(v+w)
A = matrix([[2,-3],[1,2]]) B = matrix([[-4,1],[3,-1]]) print(A+B)
Multiplication
The * operator performs scalar multiplication of vectors and matrices.
v = vector([2,1]) print(3*v) A = matrix([[2,1],[-3,2]]) print(3*A)
Similarly, the * is used for matrix-vector and matrix-matrix multiplication.
A = matrix([[2,-3],[1,2]]) v = vector([2,1]) print(A*v) B = matrix([[-4,1],[3,-1]]) print(A*B)
Operations on vectors
-
The length of a vector
vis found usingv.norm(). -
The dot product of two vectors
vandwisv*w.
Operations on matrices
-
The transpose of a matrix
Ais obtained using eitherA.transpose()orA.T. -
The inverse of a matrix
Ais obtained using eitherA.inverse()orA^-1. -
The determinant of
AisA.det(). -
A basis for the null space Nul is found with
A.right_kernel(). -
Pull out a column of
Ausing, for instance,A.column(0), which returns the vector that is the first column ofA. -
The command
A.matrix_from_columns([0,1,2])returns the matrix formed by the first three columns ofA.
Eigenvectors and eigenvalues
-
The eigenvalues of a matrix
Acan be found withA.eigenvalues(). The number of times that an eigenvalue appears in the list equals its multiplicity. -
The eigenvectors of a matrix having rational entries can be found with
A.eigenvectors_right(). -
If \(A\) can be diagonalized as \(A=P D P^{-1}\), then
D, P = A.right_eigenmatrix()
provides the matrices
DandP.-
The characteristic polynomial of
AisA.charpoly('x')and its factored formA.fcp('x').
-
Matrix factorizations
-
The \(LU\)factorization of a matrix
P, L, U = A.LU()
gives matrices so that .
-
A singular value decomposition is obtained with
U, Sigma, V = A.SVD()
It’s important to note that the matrix must be defined using
RDF. For instance,A = matrix(RDF, 3,2,[1,0,-1,1,1,1]). -
The factorization of
AisA.QR()provided thatAis defined usingRDF.

