# 7.S: Equivalence Relations (Summary)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Important Definitions

• Relation from $$A$$ to $$B$$, page 364
• Relation on $$A$$, page 364
• Domain of a relation, page 364
• Range of a relation, page 364
• Inverse of a relation, page 373
• Reflexive relation, page 375
• Symmetric relation, page 375
• Transitiverelation,page375
• Equivalence relation, page 378
• Equivalence class, page 391
• Congruence class, page 392
• Partition of a set, page 395
• Integers modulo n, page 402
• Addition in $$\mathbb{Z}_n$$, page 404
• Multiplication in $$\mathbb{Z}_n$$, page 404

Important Theorems and Results about Relations, Equivalence Relations, and Equivalence Classes

• Theorem 7.6. Let $$R$$ be a relation from the set $$A$$ to the set $$B$$. Then

1. The domain of $$R^{-1}$$ is range of $$R$$. That is, dom($$R^{-1}$$) = range($$R$$).
2. The range of $$R^{-1}$$ is domain of $$R$$. That is, range($$R^{-1}$$) = dom($$R$$).
3. The inverse of $$R^{-1}$$ is $$R$$. That is, $$(R^{-1})^{-1} = R$$.
• Theorem 7.10. Let $$n \in \mathbb{N}$$ and let $$a, b \in \mathbb{Z}$$. Then $$a \equiv b$$ (mod $$n$$ if and only if $$a$$ and $$b$$ have the same remainder when divided by $$n$$.
• Theorem 7.14. Let $$A$$ be a nonempty set and let $$\sim$$ be an equivalence relation on $$A$$.

1. For each $$a \in A$$, $$a \in [a]$$.
2. For each $$a, b \in A$$, $$a \sim b$$ if and only if $$[a] = [b]$$.
3. For each $$a, b \in A$$, $$[a] = [b]$$ or $$[a] \cap [b] = \emptyset$$.
• Corollary 7.16. Let $$n \in \mathbb{N}$$. For each $$a \in \mathbb{Z}$$, let [$$a$$] represent the congruence class of $$a$$ modulo $$n$$.

1. For each $$a \in \mathbb{Z}$$, $$a \in [a]$$.
2. For each $$a, b \in \mathbb{Z}$$, $$a \equiv b$$ (mod $$n$$) if and only if $$[a] = [b]$$.
3. For each $$a, b \in \mathbb{Z}$$, $$[a] = [b]$$ or $$[a] \cap [b] = \emptyset$$.
• Corollary 7.17. Let $$n \in \mathbb{N}$$. For each $$a \in \mathbb{Z}$$, let [$$a$$] represent the congruence class of $$a$$ modulo $$n$$.

1. $$\mathbb{Z} = [0] \cup [1] \cup [2] \cup \cdot\cdot\cdot \cup [n - 1]$$
2. For $$j, k \in \{0, 1, 2, ..., n - 1\}$$, if $$j \ne k$$, then $$[j] \cap [k] = \emptyset$$.
• Theorem 7.18. Let $$\sim$$ be an equivalence relation on the nonempty set $$A$$. Then the collection $$\mathcal{C}$$ of all equivalence classes determined by $$\sim$$ is a partition of the set $$A$$.

This page titled 7.S: Equivalence Relations (Summary) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts platform.