5.3: Real Analysis - Convergent Sequences
- Page ID
- 62293
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)For \(x \in \mathbb{R}\), \(|x|\) denotes the absolute value of \(x\): \[|x|=\left\{\begin{aligned}
x & \text { if } x \geq 0 , \\
-x & \text { if } x<0 .
\end{aligned}\right.\]
You may assume the following basic properties of absolute value (without proof):
For \(x, y, z \in \mathbb{R}\), we have:
- \(|x| \geq 0\) (and \(|x|=0 \Leftrightarrow x=0\)).
- \(|x| = |−x|\).
- \(|x+y| \leq |x|+|y|\). (“triangle inequality”)
- \(|x y|=|x| \cdot|y|\).
- \(−|x| \leq x \leq |x|\).
- \(\exists N \in \mathbb{N}, N>|x|\).
- If \(|x| < |y|\) and \(z \neq 0\), then \(|xz| < |yz|\).
- If \(|x| > |y| \neq 0\), then \(1/|x| < 1/|y|\).
Assume \(a_{1}, a_{2}, a_{3}, \ldots\) is an infinite sequence of real numbers, and \(L \in \mathbb{R}\). We say that the sequence converges to \(L\) (and write \(a_{n} \rightarrow L\)) iff \[\forall \epsilon>0, \exists N \in \mathbb{N}, \forall n>N,\left|a_{n}-L\right|<\epsilon .\]
When \(a_{n} \rightarrow L\), we can also say that the limit of the sequence is \(L\).
Let \(t \in \mathbb{R}\). If \(a_{n} = t\) for all \(n\), then \(a_{n} \rightarrow t\).
Solution
PROOF.
Given\(\epsilon>0\), let \(N = 0\). Given \(n > N\), we have \(\left|a_{n}-t\right|=|t-t|=|0|=0<\epsilon\).
If \(a_{n} = 1/n\) for all \(n\), then \(a_{n} \rightarrow 0\).
Scratchwork. To prove \(a_{n} \rightarrow 0\), we want: \[\left|a_{n}-0\right| \stackrel{?}{<} \epsilon \quad 1 / n \stackrel{?}{<} \epsilon \quad 1 / \epsilon \stackrel{?}{<} n\]
Since \(n > N\), it suffices to choose \(N > 1 / \epsilon\).
Solution
PROOF.
Given \(\epsilon > 0\), Lemma \(5.3.2(6)\) tells us there exists \(N \in \mathbb{N}\), such that \(N > 1 / \epsilon\). Given \(n > N\), we have \[\begin{aligned}
\left|a_{n}-0\right| &=1 / n & &\left(a_{n}=1 / n>0\right) \\
&<1 / N & &(n>N \text { and Lemma 5.3.2(8)) }\\
&<\epsilon & &(N>1 / \epsilon \text { and Lemma 5.3.2(8)) }
\end{aligned}\]
Show that if \(a_{n} = n/(n + 1)\) for all \(n\), then \(a_{n} \rightarrow 1\).
If \(a_{n} \rightarrow L\) and \(b_{n} \rightarrow M\), then \(a_{n} + b_{n} \rightarrow L + M\).
Scratchwork. To prove \(a_{n} + b_{n} \rightarrow L + M\), \[\text { we want to make }\left|\left(a_{n}+b_{n}\right)-(L+M)\right| \text { small (less than } \epsilon \text { ). }\]
What we know is that we can make \(\left|a_{n}-L\right|\) and \(\left|b_{n}-M\right|\) as small as we like. By the triangle inequality, we have \[\left|\left(a_{n}-L\right)+\left(b_{n}-M\right)\right|<\left|a_{n}-L\right|+\left|b_{n}-M\right|\]
By simple algebra, the left-hand side is equal to \(\left|\left(a_{n}+b_{n}\right)-(L+M)\right|\), so we just need to make the right-hand side less than \(\epsilon\). This will be true if \(\left|a_{n}-L\right|\) and \(\left|b_{n}-M\right|\) are both less than \(\epsilon / 2\).
Since \(a_{n} \rightarrow L\), there is some large \(N_{a}\), such that \(\left|a_{n}-L\right|<\epsilon / 2\) for all \(n > N_{a}\). Similarly, since \(b_{n} \rightarrow M\), there is some large \(N_{b}\), such that \(\left|b_{n}-M\right|<\epsilon / 2\) for all \(n > N_{b}\). Now, we just need know that \(n\) will be larger than both \(N_{a}\) and \(N_{b}\) whenever \(n > N\). So we should choose \(N\) to be whichever of \(N_{a}\) and \(N_{b}\) is larger. That is, we let \(N\) be the maximum of \(N_{a}\) and \(N_{b}\), which is denoted max(Na, Nb).
- Proof
-
Given \(\epsilon > 0\), we know that \(\epsilon / 2 > 0\). Hence:
- Since \(a_{n} \rightarrow L\), we know \(\exists N_{a} \in \mathbb{N}, \forall n>N_{a},\left|a_{n}-L\right|<\epsilon / 2\).
- Since \(b_{n} \rightarrow M\), we know \(\exists N_{b} \in \mathbb{N}, \forall n>N_{b},\left|b_{n}-M\right|<\epsilon / 2\).
Let \(N=\max \left(N_{a}, N_{b}\right) \in \mathbb{N}\), so \(N \geq N_{a}\) and \(N \geq N_{b}\).
Given \(n > N\):
- We have \(n > N \geq N_{a}\), so \(\left|a_{n}-L\right|<\epsilon / 2\).
- We have \(n > N \geq N_{b}\), so \(\left|b_{n}-M\right|<\epsilon / 2\).
Therefore \[\begin{aligned}
\left|\left(a_{n}+b_{n}\right)-(L+M)\right| &=\left|\left(a_{n}-L\right)+\left(b_{n}-M\right)\right| & & \text { (high-school algebra) } \\
& \leq\left|a_{n}-L\right|+\left|b_{n}-M\right| & & \text { (triangle inequality) } \\
&<\epsilon / 2+\epsilon / 2 & &((*) \text { and }(* *)) \\
&=\epsilon . & &
\end{aligned}\]
Assume \(a_{n} \rightarrow L\), and \(c \in \mathbb{R}\). Do these proofs directly from the definition of convergence.
- Show \(−a_{n} \rightarrow −L\).
- Show \(a_{n} + c \rightarrow L + c\).
- Show \(2a_{n} \rightarrow 2L\).
- Show \(ca_{n} \rightarrow cL\) if \(c \neq 0\).
- Show that if \(L > 0\), then \(\exists N \in \mathbb{N}\), such that \(a_{n} > 0\) for all \(n > N\).
- (harder) Show that if \(L = 1\), then \(1/a_{n} \rightarrow 1\).
Assume \(a_{n} \rightarrow L\) and \(b_{n} \rightarrow M\).
- Show that if \(M = 0\), and \(|a_{n}| \leq 2\) for all \(n\), then \(a_{n}b_{n} \rightarrow 0\).
- (harder) Show \(a_{n}b_{n} \rightarrow LM\).