6.7: Inverse Functions
- Page ID
- 23911
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Backwards poets write inverse.
Author unknown
All students of mathematics have experience with solving an equation for \(x\). Inverse functions are a special case of this.
In Example \(6.6.6\), it was shown that \(f(x) = 5x − 7\) is a bijection. A look at the proof reveals that the formula \((y + 7)/5\) plays a key role. The reason this formula is so important is that (solving for \(x\)) we have \[y=5 x-7 \quad \Leftrightarrow \quad x=\frac{y+7}{5} .\]
In order to see this as an “inverse function,” we translate into the language of functions, by letting \(g: \mathbb{R} \rightarrow \mathbb{R}\) be defined by \(g(y) = (y + 7)/5\). Then the above assertion can be restated as: (6.7.2) \[y=f(x) \quad \Leftrightarrow \quad x=g(y) .\]
This tells us that \(g\) does exactly the opposite of what \(f\) does: if \(f\) takes \(x\) to \(y\), then \(g\) takes \(y\) to \(x\). We will say that \(g\) is the “inverse” of \(f\).
The following exercise provides a restatement of (6.7.2) that will be used in the official definition of inverse functions. However, we usually use \(A\) for the domain of a generic function (and \(B\) for the codomain), so it replaces the variables \(x\) and \(y\) with \(a\) and \(b\).
Suppose \(f: A \rightarrow B\) and \(g: B \rightarrow A\). Show that if \[\forall a \in A, \forall b \in B,(b=f(a) \Leftrightarrow a=g(b)) ,\]
then
- \(g(f(a))=a \text { for all } a \in A\) and
- \(\text { b) } f(g(b))=b \text { for all } b \in B \text {. }\)
Suppose
- \(f: A \rightarrow B\), and
- \(g: B \rightarrow A\).
We say that \(g\) is the inverse of \(f\) iff:
- \(g(f(a)) = a \text { for all } a \in A\), and
- \(f(g(b))=b \text { for all } b \in B\)
Suppose \(z: S \rightarrow T\) and \(k: T \rightarrow S\). What does it mean to say that \(k\) is the inverse of \(z\)?
Solution
It means that two things are true:
- \(k(z(s)) = s \text { for all } s \in S\), and
- \(z(k(t))=t \text { for all } t \in T .\)
Suppose \(c: U \rightarrow V\) and \(d: V \rightarrow U\). What does it mean to say that \(d\) is the inverse of \(c\)?
The inverse of \(f\) is denoted \(f^{−1}\).
Note that:
- the husband of the wife of any married man is the man himself, i.e., \[\text { husband }(\text { wife }(m))=m ,\]
and - the wife of the husband of any married woman is the woman herself, i.e., \[\text { wife }(\text { husband }(w))=w .\]
This means the \(\text {husband}\) function is the inverse of the \(\text {wife}\) function. That is, \(\text{wife}^{−1} = \text{ husband.}\)
The inverse is easy to describe in terms of arrow diagrams. Namely, from the fact that \[b=f(a) \quad \Leftrightarrow \quad a=f^{-1}(b) ,\]
we see that \[f \text { has an arrow from } a \text { to } b \Leftrightarrow f^{-1} \text { has an arrow from } b \text { to } a \text {. } .\]
Therefore, the arrow diagram of \(f^{−1}\) is obtained by just reversing all the arrows in the arrow diagram of \(f\):
Define \(f: \mathbb{R} \rightarrow \mathbb{R}\) and \(g: \mathbb{R} \rightarrow \mathbb{R}\) by \(f(x) = 7x − 4\) and \(g(x) = (x + 4)/7\). Verify that \(g\) is the inverse of \(f\).
Solution
It suffices to show:
- \(g(f(x))=x \text { for all } x \in \mathbb{R}\), and
- \(f(g(y))=y \text { for all } y \in \mathbb{R} .\)
- Given \(x \in \mathbb{R}\), we have \[g(f(x))=\frac{f(x)+4}{7}=\frac{(7 x-4)+4}{7}=\frac{7 x}{7}=x .\]
- Given \(y \in \mathbb{R}\), we have \[f(g(y))=7 g(y)-4=7\left(\frac{y+4}{7}\right)-4=(y+4)-4=y .\]
In each case, verify that \(g\) is the inverse of \(f\).
- \(f: \mathbb{R} \rightarrow \mathbb{R} \text { is defined bv } f(x)=9 x-6 \text { and } g: \mathbb{R} \rightarrow \mathbb{R} \text { is defined by } g(x)=(x+6) / 9 .\)
- \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {is defined by } f(x)=x^{2} \text { and } g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {is defined by } g(x)=\sqrt{x} .\)
- \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {is defined by } f(x)=1 / x \text { and } g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {is defined by } g(x)=1 / x .\)
- \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {is defined by } f(x)=\sqrt{x+1}-1 \text { and } g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {is defined by } g(x)=x^{2}+2 x \text {. }\)
Most functions do not have an inverse. In fact, only bijections have an inverse:
Suppose \(f: A \rightarrow B\). If \(f\) has an inverse \(f^{−1}: B \rightarrow A\), then \(f\) is a bijection.
- Proof
-
Assume there is a function \(f^{−1}: B \rightarrow A\) that is an inverse of \(f\). Then
- \(f^{-1}(f(a))=a \text { for all } a \in A\), and
- \(f\left(f^{-1}(b)\right)=b \text { for all } b \in B\).
We wish to show that \(f\) is a bijection. This is left as an exercise for the reader. [Hint: This is very similar to many of the previous proofs that functions are bijections, but with the equation \(a = f^{−1}(b)\) in place of an explicit formula for \(a\). For example, if \(f(a_{1}) = f(a_{2})\), then \(f^{−1} (f(a_{1})) = f^{−1}(f(a_{2}))\). What is each side of this equation equal to?]
- Prove that the inverse of a bijection is a bijection.
- Prove the converse of Exercise \(6.7.3\).
- Show that the inverse of a function is unique: if \(g_{1}\) and \(g_{2}\) are inverses of \(f\), then \(g_{1} = g_{2}\). (This is why we speak of the inverse of \(f\), rather than an inverse of \(f\).)
If \(f\) is a function that has an inverse, then it is easy to find \(f^{−1}\) as a set of ordered pairs. Namely, \[f^{-1}=\{(b, a) \mid(a, b) \in f\} .\]
This is simply a restatement of the fact that \[b=f(a) \Leftrightarrow a=f^{-1}(b)\]
(or the fact that the arrow diagram of \(f^{−1}\) is obtained by reversing the arrows in the arrow diagram of \(f\)).
Prove the converse of Theorem \(6.7.12.\) [Hint: Find \(f^{−1}\) as a set of ordered pairs.]
Suppose \(f: A \rightarrow B\) is a bijection. Show that the inverse of \(f^{−1}\) is \(f\). That is, \((f^{−1})^{−1} = f\).