2.1: Definitions
- Page ID
- 99056
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Let \(X\) and \(Y\) be sets. A relation from \(X\) to \(Y\) is a subset of \(X \times Y\).
Alternatively, any set of ordered pairs is a relation. If \(Y=X\), we say that \(R\) is a relation on \(X\).
Notation. \(x\) Ry Let \(X\) and \(Y\) be sets and \(R\) be a relation on \(X \times Y\). If \(x \in X\) and \(y \in Y\), then we may express that \(x\) bears relation \(R\) to \(y\) (that is \((x, y) \in R\) ) by writing \(x R y\).
So for \(X\) and \(Y\) sets, \(x \in X, y \in Y\), and \(R\) a relation on \(X \times Y\), \(x R y\) if and only if \((x, y) \in R\).
Let \(\leq\) be the usual ordering on \(\mathbb{Q}\). Then \(\leq\) is a relation on \(\mathbb{Q}\). We write \[1 / 2 \leq 2\] to express that \(1 / 2\) bears the relation \(\leq\) to 2 .
Define a relation \(R\) from \(\mathbb{Z}\) to \(\mathbb{R}\) by \(x R y\) if \(x>y+3\). Then we could write \(7 R \sqrt{2}\) or \((7, \sqrt{2}) \in R\) to say that \((7, \sqrt{2})\) is in the relation.
Let \(X=\{2,7,17,27,35,72\}\). Define a relation \(R\) by \(x R y\) if \(x \neq y\) and \(x\) and \(y\) have a digit in common. Then \(R=\{(2,27),(2,72),(7,17),(7,27),(7,72),(17,7),(17,27),(17,72),\), \((27,2),(27,7),(27,17),(27,72),(72,2),(72,7),(72,17),(72,27)\}\). ExAMPLE 2.4. Let \(P\) be the set of all polygons in the plane. Define a relation \(E\) by saying \((x, y) \in E\) if \(x\) and \(y\) have the same number of sides.
How do mathematicians use relations? A relation on a set can be used to impose structure. In Example 2.1, the usual ordering relation \(\leq\) on \(\mathbb{Q}\) allows us to think of rational numbers as lying on a number line, which provides additional insight into rational numbers. In Example 2.4, we can use the relation to break polygons up into the sets of triangles, quadrilaterals, pentagons, etc.
A function \(f: X \rightarrow Y\) can be thought of as a very special sort of relation from \(X\) to \(Y\). Indeed, the graph of the function is a set of ordered pairs in \(X \times Y\), but it has the additional property that every \(x\) in \(X\) occurs exactly once as a first element of a pair in the relation. As we discussed in Section 1.3, functions are a useful way to relate sets.
Let \(X\) be a set, and \(R\) a relation on \(X\). Here are some important properties the relation may or may not have.
\(R\) is reflexive if for every \(x \in X\), \[x R x .\] Symmetric \(R\) is symmetric if for any \(x, y \in X\), \[x R y \text { implies } y R x \text {. }\] Antisymmetric \(R\) is antisymmetric if for any \(x, y \in X\), \[[(x, y) \in R \text { and }(y, x) \in R] \text { implies } x=y \text {. }\] Transitive \(R\) is transitive if for any \(x, y, z \in X\), \[[x R y \text { and } y R z] \text { implies }[x R z] \text {. }\] Which of these four properties apply to the relations given in Examples 2.1-2.4 (Exercise 2.1)?