Skip to main content
Mathematics LibreTexts

9.7: Exercises

  • Page ID
    • Bob Dumas and John E. McCarthy
    • University of Washington and Washington University in St. Louis
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    EXERCISE 9.1. What are the primitive fourth roots of unity?

    EXERCISE 9.2. Show that if \(\omega\) is any \(n^{\text {th }}\) root of unity other than 1, then \(1+\omega+\omega^{2}+\cdots+\omega^{n-1}=0 .\) EXERCISE 9.3. How many primitive cube roots of unity are there? How many primitive sixth roots? How many primitive \(n^{\text {th }}\) roots for a general \(n\) ?

    EXERCISE 9.4. Redo Example \(9.8\) to get all three roots from the Tartaglia-Cardano formula.

    EXERCISE 9.5. Let \(p(x)=x^{3}+3 x+\sqrt{2}\). Show without using the Cardano-Tartaglia formula that \(p\) has exactly one real root. Find it. What are the complex roots?

    EXERCISE 9.6. Fill in the proof of Proposition 9.34.

    EXERCISE 9.7. Let \(g: G \rightarrow \mathbb{C}\) be a continuous function on \(G \subseteq \mathbb{C}\). Show that \(\Re(g), \Im(g)\) and \(|g|\) are continuous. Conversely, show that the continuity of \(\Re(g)\) and \(\Im(g)\) imply the continuity of \(g\).

    EXERCISE 9.8. Show that every continuous real-valued function on a closed, bounded subset of \(\mathbb{C}\) attains its extrema.

    This page titled 9.7: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Bob Dumas and John E. McCarthy via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?