Skip to main content
Mathematics LibreTexts

8.4: Estimation by Rounding Fractions

  • Page ID
    48881
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Learning Objectives

    • be able to estimate the sum of two or more fractions using the technique of rounding fractions

    Estimation by rounding fractions is a useful technique for estimating the result of a computation involving fractions. Fractions are commonly rounded to \(\dfrac{1}{4}\), \(\dfrac{1}{2}\), \(\dfrac{3}{4}\), 0, and 1. Remember that rounding may cause estimates to vary.

    Sample Set A

    Make each estimate remembering that results may vary.

    Estimate \(\dfrac{3}{5} + \dfrac{5}{12}\).

    Solution

    Notice that \(\dfrac{3}{5}\) is about \(\dfrac{1}{2}\), and that \(\dfrac{5}{12}\) is about \(\dfrac{1}{2}\).

    Thus, \(\dfrac{3}{5} + \dfrac{5}{12}\) is about \(\dfrac{1}{2} + \dfrac{1}{2} = 1\). In fact, \(\dfrac{3}{5} + \dfrac{5}{12} = \dfrac{61}{60}\), a little more than 1.

    Sample Set A

    Estimate \(5 \dfrac{3}{8} + 4 \dfrac{9}{10} + 11 \dfrac{1}{5}\).

    Solution

    Adding the whole number parts, we get 20. Notice that \(\dfrac{3}{8}\) is close to \(\dfrac{1}{4}\), \(\dfrac{9}{10}\) is close to 1, and \(\dfrac{1}{5}\) is close to \(\dfrac{1}{4}\). Then \(\dfrac{3}{8} + \dfrac{9}{10} + \dfrac{1}{5}\) is close to \(\dfrac{1}{4} + 1 + \dfrac{1}{4} = 1 \dfrac{1}{2}\).

    Thus, \(5 \dfrac{3}{8} + 4 \dfrac{9}{10} + 11 \dfrac{1}{5}\) is close to \(20 + 1 \dfrac{1}{2} = 21 \dfrac{1}{2}\).

    In fact, \(5 \dfrac{3}{8} + 4 \dfrac{9}{10} + 11 \dfrac{1}{5} = 21 \dfrac{19}{40}\), a little less than \(21 \dfrac{1}{2}\).

    Practice Set A

    Use the method of rounding fractions to estimate the result of each computation. Results may vary.

    \(\dfrac{5}{8} + \dfrac{5}{12}\)

    Answer

    Results may vary. \(\dfrac{1}{2} + \dfrac{1}{2} = 1\). In fact, \(\dfrac{5}{8} + \dfrac{5}{12} = \dfrac{25}{24} = 1 \dfrac{1}{24}\)

    Practice Set A

    \(\dfrac{7}{9} + \dfrac{3}{5}\)

    Answer

    Results may vary. \(1 + \dfrac{1}{2} = 1 \dfrac{1}{2}\). In fact, \(\dfrac{7}{9} + \dfrac{3}{5} = 1 \dfrac{17}{45}\)

    Practice Set A

    \(8 \dfrac{4}{15} + 3 \dfrac{7}{10}\)

    Answer

    Results may vary. \(8 \dfrac{1}{4} + 3 \dfrac{3}{4} = 11 + 1 = 12\). In fact, \(8 \dfrac{4}{15} + 3 \dfrac{7}{10} = 11 \dfrac{29}{30}\)

    Practice Set A

    \(16 \dfrac{1}{20} + 4 \dfrac{7}{8}\)

    Answer

    Results may vary. \((16 + 0) + (4 + 1) = 16 + 5 = 21\). In fact, \(16 \dfrac{1}{20} + 4 \dfrac{7}{8} = 20 \dfrac{37}{40}\)

    Exercises

    Estimate each sum or difference using the method of rounding. After you have made an estimate, find the exact value of the sum or difference and compare this result to the estimated value. Result may vary.

    Exercise \(\PageIndex{1}\)

    \(\dfrac{5}{6} + \dfrac{7}{8}\)

    Answer

    \(1 + 1 = 2(1 \dfrac{17}{24})\)

    Exercise \(\PageIndex{2}\)

    \(\dfrac{3}{8} + \dfrac{11}{12}\)

    Exercise \(\PageIndex{3}\)

    \(\dfrac{9}{10} + \dfrac{3}{5}\)

    Answer

    \(1 + \dfrac{1}{2} = 1 \dfrac{1}{2} (1 \dfrac{1}{2})\)

    Exercise \(\PageIndex{4}\)

    \(\dfrac{13}{15} + \dfrac{1}{20}\)

    Exercise \(\PageIndex{5}\)

    \(\dfrac{3}{20} + \dfrac{6}{25}\)

    Answer

    \(\dfrac{1}{4} + \dfrac{1}{4} = \dfrac{1}{2} (\dfrac{39}{100})\)

    Exercise \(\PageIndex{6}\)

    \(\dfrac{1}{12} + \dfrac{4}{5}\)

    Exercise \(\PageIndex{7}\)

    \(\dfrac{15}{16} + \dfrac{1}{12}\)

    Answer

    \(1 + 0 = 1 (1 \dfrac{1}{48})\)

    Exercise \(\PageIndex{8}\)

    \(\dfrac{29}{30} + \dfrac{11}{20}\)

    Exercise \(\PageIndex{9}\)

    \(\dfrac{5}{12} + 6 \dfrac{4}{11}\)

    Answer

    \(\dfrac{1}{2} + 6 \dfrac{1}{2} = 7 (6 \dfrac{103}{132})\)

    Exercise \(\PageIndex{10}\)

    \(\dfrac{3}{7} + 8 \dfrac{4}{15}\)

    Exercise \(\PageIndex{11}\)

    \(\dfrac{9}{10} + 2 \dfrac{3}{8}\)

    Answer

    \(1 + 2 \dfrac{1}{2} = 3 \dfrac{1}{2} (3 \dfrac{11}{40})\)

    Exercise \(\PageIndex{12}\)

    \(\dfrac{19}{20} + 15 \dfrac{5}{9}\)

    Exercise \(\PageIndex{13}\)

    \(8 \dfrac{3}{5} + 4 \dfrac{1}{20}\)

    Answer

    \(8 \dfrac{1}{2} + 4 = 12 \dfrac{1}{2} (12 \dfrac{13}{20})\)

    Exercise \(\PageIndex{14}\)

    \(5 \dfrac{3}{20} + 2 \dfrac{8}{15}\)

    Exercise \(\PageIndex{15}\)

    \(9 \dfrac{1}{15} + 6 \dfrac{4}{5}\)

    Answer

    \(9 + 7 = 16 (15 \dfrac{13}{15})\)

    Exercise \(\PageIndex{16}\)

    \(7 \dfrac{5}{12} + 10 \dfrac{1}{16}\)

    Exercise \(\PageIndex{17}\)

    \(3 \dfrac{11}{20} + 2 \dfrac{13}{25} + 1 \dfrac{7}{8}\)

    Answer

    \(3 \dfrac{1}{2} + 2 \dfrac{1}{2} + 2 = 8\) (7 \(\dfrac{189}{200}\))

    Exercise \(\PageIndex{18}\)

    \(6 \dfrac{1}{12} + 1 \dfrac{1}{10} + 5 \dfrac{5}{6}\)

    Exercise \(\PageIndex{19}\)

    \(\dfrac{15}{16} - \dfrac{7}{8}\)

    Answer

    \(1 - 1 = 0 (\dfrac{1}{16})\)

    Exercise \(\PageIndex{20}\)

    \(\dfrac{12}{25} - \dfrac{9}{20}\)

    Exercises for Review

    Exercise \(\PageIndex{21}\)

    The fact that

    \((\text{a first number } \cdot \text{a second number}) \cdot \text{a third number} = \text{a first number } \cdot (\text{a second number } \cdot \text{a third number})\)

    is an example of which property of multiplication?

    Answer

    associative

    Exercise \(\PageIndex{22}\)

    Find the quotient: \(\dfrac{14}{15} \div \dfrac{4}{45}\).

    Exercise \(\PageIndex{23}\)

    Find the difference: \(3 \dfrac{5}{9} - 2 \dfrac{2}{3}\)

    Answer

    \(\dfrac{8}{9}\)

    Exercise \(\PageIndex{24}\)

    Find the quotient: \(4.6 \div 0.11\).

    Exercise \(\PageIndex{25}\)

    Use the distributive property to compute the product: \(25 \cdot 37\).

    Answer

    \(25(40 - 3) = 1000 - 75 = 925\)


    This page titled 8.4: Estimation by Rounding Fractions is shared under a CC BY license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .

    • Was this article helpful?