3.3: Simplifying Algebraic Expressions
- Page ID
- 22475
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Recall the commutative and associative properties of multiplication.
The Commutative Property of Multiplication. If a and b are any integers, then
a · b = b · a, or equivalently, ab = ba.
The Associative Property of Multiplication. If a, b, and c are any integers, then
(a · b) · c = a · (b · c), or equivalently, (ab)c = a(bc).
The commutative property allows us to change the order of multiplication without affecting the product or answer. The associative property allows us to regroup without affecting the product or answer.
Simplify: 2(3x).
Solution
Use the associative property to regroup, then simplify.
\[ \begin{aligned} 2(3x) = (2 \cdot 3)x ~ & \textcolor{red}{ \text{ Regrouping with the associative property.}} \\ = 6x ~ & \textcolor{red}{ \text{ Simplify: } 2 \cdot 3 = 6.} \end{aligned}\nonumber \]
Simplify: −5(7y)
- Answer
-
−35y
The statement 2(3x)=6x is an identity. That is, the left-hand side and right-hand side of 2(3x)=6x are the same for all values of x. Although the derivation in Example 1 should be the proof of this statement, it helps the intuition to check the validity of the statement for one or two values of x.
If x = 4, then
\[ \begin{array}{c c c} 2(3x) = 2(3( \textcolor{red}{4})) & \text{and} & 6x = 6( \textcolor{red}{4}) \\ = 2(12) & & = 24 \\ = 24 \end{array}\nonumber \]
If x = −5, then
\[ \begin{array}{c c c} 2(3x) = 2(3( \textcolor{red}{-5})) & \text{and} & 6x = 6( \textcolor{red}{-5}) \\ =2(-15) & & = -30 \\ = -30 \end{array}\nonumber \]
The above calculations show that 2(3x)=6x for both x = 4 and x = −5. Indeed, the statement 2(3x)=6x is true, regardless of what is substituted for x.
Simplify: (−3t)(−5).
Solution
In essence, we are multiplying three numbers, −3, t, and −5, but the grouping symbols ask us to multiply the −3 and the t first. The associative and commutative properties allow us to change the order and regroup.
\[ \begin{aligned} (-3t)(-5) = ((-3)(-5))t ~ & \textcolor{red}{ \text{ Change the order and regroup.}} \\ = 15t ~ & \textcolor{red}{ \text{ Multiply: } (-3)(-5) = 15.} \end{aligned}\nonumber \]
Simplify: (−8a)(5)
- Answer
-
−40a
Simplify: (−3x)(−2y)
Solution
In essence, we are multiplying four numbers, −3, x, −2, and y, but the grouping symbols specify a particular order. The associative and commutative properties allow us to change the order and regroup.
\[ \begin{aligned} (-3x)(-2y) =((-3)(-2))(xy) ~ & \textcolor{red}{ \text{ Change the order and regroup.}} \\ = 6xy ~ & \textcolor{red}{ \text{ Multiply: } (-3)(-2)=6.} \end{aligned}\nonumber \]
Simplify: (−4a)(5b)
- Answer
-
−20ab
Speeding Things Up
The meaning of the expression 2 · 3 · 4 is clear. Parentheses and order of operations are really not needed, as the commutative and associative properties explain that it doesn’t matter which of the three numbers you multiply together first.
- You can multiply 2 and 3 first:
\[ \begin{aligned} 2 \cdot 3 \cdot 4 &= (2 \cdot 3) \cdot 4 \\ &= 6 \cdot 4 \\ &= 24. \end{aligned}\nonumber \]
- Or you can multiply 3 and 4 first:
\[ \begin{aligned} 2 \cdot 3 \cdot 4 &= 2 \cdot (3 \cdot 4) \\ &= 2 \cdot 12 \\ &= 24. \end{aligned}\nonumber \]
- Or you can multiply 2 and 4 first:
\[ \begin{aligned} 2 \cdot 3 \cdot 4 &= (2 \cdot 4) \cdot 3 \\ &= 8 \cdot 3 \\ &= 24. \end{aligned}\nonumber \]
So, it does not matter which two factors you multiply first.
Of course, this would not be the case if there were a mixture of multiplication and other operators (division, addition, subtraction). Then we would have to strictly follow the “Rules Guiding Order of Operations.” But if the only operator is multiplication, the order of multiplication is irrelevant.
Thus, when we see 2(3x), as in Example 1, we should think “It’s all multiplication and it doesn’t matter which two numbers I multiply together first, so I’ll multiply the 2 and the 3 and get 2(3x)=6x.”
Our comments apply equally well to a product of four or more factors. It simply doesn’t matter how you group the multiplication. So, in the case of (−3x)(−2y), as in Example 3, find the product of −2 and −3 and multiply the result by the product of x and y. That is, (−3x)(−2y)=6xy.
Simplify: (2a)(3b)(4c).
Solution
The only operator is multiplication, so we can order and group as we please. So, we’ll take the product of 2, 3, and 4, and multiply the result by the product of a, b, and c. That is,
\[(2a)(3b)(4c)=24abc\nonumber \]
Simplify: (−3x)(−2y)(−4z)
- Answer
-
−24xyz.
The Distributive Property
Multiplication is distributive with respect to addition.
If a, b, and c are any integers, then
a · (b + c) = a · b + a · c, or equivalently, a(b + c) = ab + ac.
For example, if we follow the “Rules Guiding Order of Operations” and first evaluate the expression inside the parentheses, then
\[ \begin{aligned} 3(4+5)=3(9) ~ & \textcolor{red}{ \text{ Parentheses first: } 4+5 = 9.} \\ =27. ~ & \textcolor{red}{ \text{ Multiply: } 3(9) = 27.} \end{aligned}\nonumber \]
But if we “distribute” the 3, we get the same answer.
\[ \begin{aligned} 3(4+5) =3(4+5) ~ & \begin{aligned} \textcolor{red}{ \text{ Each number in parentheses is multiplied}} \\ \textcolor{red}{ \text{ by the number 3 outside the parentheses.}} \end{aligned} \\ = 3(4) +3(5) ~ \\ = 12 + 15 ~ & \textcolor{red}{ \text{ Multiply first: } 3(4) = 12,~ 3(5) = 15.} \\ =27 ~ & \textcolor{red}{ \text{ Add.}} \end{aligned}\nonumber \]
Use the distributive property to simplify: 3(4x + 5).
Solution
Distribute the 3.
\[ \begin{aligned} 3(4x+5) = 3(4x)+3(5) ~ & \begin{aligned} \textcolor{red}{ \text{ Each number in parentheses is multiplied}} \\ \textcolor{red}{ \text{ by the number 3 outside the parentheses.}} \end{aligned} \\ =12x + 15 ~ & \textcolor{red}{ \text{ Multiply first: } 3(4x)=12x,~ 3(5)=15.} \end{aligned}\nonumber \]
Use the distributive property to simplify: 2(5z+7).
- Answer
-
10z + 14
Multiplication is also distributive with respect to subtraction.
If a, b, and c are any integers, then
a · (b − c) = a · b − a · c, or equivalently, a(b − c) = ab − ac.
The application of this form of the distributive property is identical to the first, the only difference being the subtraction symbol.
Use the distributive property to simplify: 5(3x − 2).
Solution
Distribute the 5.
\[ \begin{aligned} 5(3x - 2) = 5(3x)-5(2) ~ & \begin{aligned} \textcolor{red}{ \text{ Each number in parentheses is multiplied }} \\ \textcolor{red}{ \text{ by the number 5 outside the parentheses.}} \end{aligned} \\ = 15x - 10 ~ & \textcolor{red}{ \text{ Multiply first: } 5(3x) = 15x, 5(2) = 10.} \end{aligned}\nonumber \]
Use the distributive property to simplify: 7(4a − 5).
- Answer
-
28a − 35
Remove parentheses: (a) −9(2t + 7), and (b) −5(4 − 3y).
Solution
a) Use the distributive property.
\[ \begin{aligned} -9(2t+7) = -9(2t)+(-9)(7) ~ & \textcolor{red}{ \text{ Distribute multiplication by }-9.} \\ = -18t + (-63) ~ & \textcolor{red}{ \text{ Multiply: } -9(2t) = -18t \text{ and } -9(7) = -63.} \\ = - 18t - 63 ~ & \textcolor{red}{ \text{ Write the answer in simpler form.}} \\ ~ & \textcolor{red}{ \text{ Adding } -63 \text{ is the same as subtracting 63.}} \end{aligned}\nonumber \]
b) Use the distributive property.
\[ \begin{aligned} -5(4-3y) = -5(4)-(-5)(3y) ~ & \textcolor{red}{ \text{ Distribute multiplication by }-5.} \\ = -20-(-15y) ~ & \textcolor{red}{ \text{ Multiply: } -5(4) = -20 \text{ and } -5(3y) = -15y.} \\ = - 18t - 63 ~ & \textcolor{red}{ \text{ Write the answer in simpler form.}} \\ ~ & \textcolor{red}{ \text{ Subtracting } -15y \text{ is the same as adding } 15y.} \end{aligned}\nonumber \]
Remove parentheses: −3(4t − 11).
- Answer
-
−12t + 33
Example 7 stresses the importance of using as few symbols as possible to write your final answer. Hence, −18t − 63 is favored over −18t + (−63) and −20 + 15y is favored over −20 − (−15y). You should always make these final simplifications.
Moving a Bit Quicker
Once you’ve applied the distributive property to a number of problems, showing all the work as in Example 7, you should try to eliminate some of the steps. For example, consider again Example 7(a). It’s not difficult to apply the distributive property without writing down a single step, getting:
\[−9(2t + 7) = −18t − 63.\nonumber \]
Here’s the thinking behind this technique:
- First, multiply −9 times 2t, getting −18t.
- Second, multiply −9 times +7, getting −63.
Note that this provides exactly the same solution found in Example 7(a).
Let try this same technique on Example 7(b).
\[−5(4 − 3y) = −20 + 15y\nonumber \]
Here’s the thinking behind this technique.
- First, multiply −5 times 4, getting −20.
- Second, multiply −5 times −3y, getting +15y.
Note that this provides exactly the same solution found in Example 7(b).
Extending the Distributive Property
Suppose that we add an extra term inside the parentheses.
If a, b, c, and d are any integers, then
a(b + c + d) = ab + ac + ad.
Note that we “distributed” the a times each term inside the parentheses. Indeed, if we added still another term inside the parentheses, we would “distribute” a times that term as well.
Remove parentheses: −5(2x − 3y + 8).
Solution
We will use the “quicker” technique, “distributing” −5 times each term in the parentheses mentally.
\[ -5(2x - 3y +8)=-10x + 15y -40\nonumber \]
Here is our thought process:
- First, multiply −5 times 2x, getting −10x.
- Second, multiply −5 times −3y, getting +15y.
- Third, multiply −5 times +8, getting −40.
Remove parentheses: −3(4a − 5b + 7)
- Answer
-
−12a + 15b − 21
Remove parentheses: −4(−3a + 4b − 5c + 12).
Solution
We will use the “quicker” technique, “distributing” −4 times each term in the parentheses mentally.
\[ -4(-3a + 4b - 5c +12) = 12a - 16b + 20c - 48\nonumber \]
Here is our thought process:
- First, multiply −4 times −3a, getting 12a.
- Second, multiply −4 times +4b, getting −16b.
- Third, multiply −4 times −5c, getting +20c.
- Fourth, multiply −4 times +12, getting −48.
Remove parentheses: −2(−2x + 4y − 5z − 11).
- Answer
-
4x − 8y + 10z + 22
Distributing a Negative
It is helpful to recall that negating is equivalent to multiplying by −1.
Let a be any integer, then
(−1)a = −a and −a = (−1)a.
We can use this fact, combined with the distributive property, to negate a sum.
Remove parentheses: −(a + b).
Solution
Change the negative symbol into multiplying by −1, then distribute the −1.
\[ \begin{aligned} -(a + b) =(-1)(a+b) ~ & \textcolor{red}{ \text{ Negating is equivalent to multiplying by } -1.} \\ =-a-b ~ & \textcolor{red}{ \text{ Distribute the }-1.} \end{aligned}\nonumber \]
We chose to use the “quicker” technique of “distributing” the −1. Here is our thinking:
- Multiply −1 times a, getting −a.
- Multiply −1 times +b, getting −b.
Remove parentheses: −(4a − 3c)
- Answer
-
−4a + 3c
The results in Example 10 and Example 11 show us how to negate a sum: Simply negate each term of the sum. Positive terms change to negative, negative terms turn to positive.
To negate a sum, simply negate each term of the sum. For example, if a and b are integers, then
−(a + b) = −a − b and − (a − b) = −a + b.
Remove parentheses: −(5 − 7u + 3t).
Solution
Simply negate each term in the parentheses.
\[−(5 − 7u + 3t) = −5+7u − 3t\nonumber \]
Remove parentheses: −(5 − 2x + 4y − 5z)
- Answer
-
−5+2x − 4y + 5z
Exercises
In Exercises 1-20, use the associative and commutative properties of multiplication to simplify the expression.
1. 10(−4x)
2. 7(−8x)
3. (−10x)(−3)
4. (−5x)(−8)
5. −5(3x)
6. 9(6x)
7. (−4x)10
8. (−10x)(−6)
9. (5x)3
10. (3x)3
11. (5x)10
12. (−2x)(−10)
13. −9(−7x)
14. −10(5x)
15. 6(2x)
16. 3(−10x)
17. −8(−9x)
18. 3(−3x)
19. (6x)7
20. (−8x)(−5)
In Exercises 21-44, simplify the expression.
21. 8(7x + 8)
22. −2(5x + 5)
23. 9(−2 + 10x)
24. −9(4 + 9x)
25. −(−2x + 10y − 6)
26. −(−6y + 9x − 7)
27. 2(10 + x)
28. 2(10 − 6x)
29. 3(3 + 4x)
30. 3(4 + 6x)
31. −(−5 − 7x + 2y)
32. −(4x − 8 − 7y)
33. 4(−6x + 7)
34. 6(4x + 9)
35. 4(8x − 9)
36. 10(−10x + 1)
37. −(4 − 2x − 10y)
38. −(−4x + 6 − 8y)
39. −(−5x +1+9y)
40. −(−10 − 5x − 4y)
41. −(6x + 2 − 10y)
42. −(6x + 4 − 10y)
43. −(−3y − 4+4x)
44. −(−7 − 10x + 7y)
Answers
1. −40x
3. 30x
5. −15x
7. −40x
9. 15x
11. 50x
13. 63x
15. 12x
17. 72x
19. 42x
21. 56x + 64
23. −18 + 90x
25. 2x − 10y + 6
27. 20 + 2x
29. 9 + 12x
31. 5+7x − 2y
33. −24x + 28
35. 32x − 36
37. −4+2x + 10y
39. 5x − 1 − 9y
41. −6x − 2 + 10y
43. 3y + 4 − 4x