Skip to main content
Mathematics LibreTexts

3.8.1: Review Exercises

  • Page ID
    118907
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Review Exercises

    Introduction to Integers

    Locate Positive and Negative Numbers on the Number Line

    In the following exercises, locate and label the integer on the number line.

    353.

    5 5

    354.

    −5 −5

    355.

    −3 −3

    356.

    3 3

    357.

    −8 −8

    358.

    −7 −7

    Order Positive and Negative Numbers

    In the following exercises, order each of the following pairs of numbers, using << or >.>.

    359.

    4 __ 8 4 __ 8

    360.

    −6 __ 3 −6 __ 3

    361.

    −5 __ −10 −5 __ −10

    362.

    −9 __ −4 −9 __ −4

    363.

    2 __ −7 2 __ −7

    364.

    −3 __ 1 −3 __ 1

    Find Opposites

    In the following exercises, find the opposite of each number.

    365.

    6 6

    366.

    −2 −2

    367.

    −4 −4

    368.

    3 3

    In the following exercises, simplify.

    369.
    1. (8)(8)
    2. (−8)(−8)
    370.
    1. (9)(9)
    2. (−9)(−9)

    In the following exercises, evaluate.

    371.

    x,whenx,when

    1. x=32x=32
    2. x=−32x=−32
    372.

    n,whenn,when

    1. n=20n=20
    2. n=−20n=−20

    Simplify Absolute Values

    In the following exercises, simplify.

    373.

    | −21 | | −21 |

    374.

    | −42 | | −42 |

    375.

    | 36 | | 36 |

    376.

    | 15 | | 15 |

    377.

    | 0 | | 0 |

    378.

    | −75 | | −75 |

    In the following exercises, evaluate.

    379.

    | x | when x = −14 | x | when x = −14

    380.

    | r | when r = 27 | r | when r = 27

    381.

    | y | when y = 33 | y | when y = 33

    382.

    | −n | when n = −4 | −n | when n = −4

    In the following exercises, fill in <,>,or=<,>,or= for each of the following pairs of numbers.

    383.

    | −4 | __ 4 | −4 | __ 4

    384.

    −2 __ | −2 | −2 __ | −2 |

    385.

    | −6 | __ −6 | −6 | __ −6

    386.

    | −9 | __ | −9 | | −9 | __ | −9 |

    In the following exercises, simplify.

    387.

    ( −55 ) and | −55 | ( −55 ) and | −55 |

    388.

    ( −48 ) and | −48 | ( −48 ) and | −48 |

    389.

    | 12 5 | | 12 5 |

    390.

    | 9 + 7 | | 9 + 7 |

    391.

    6 | −9 | 6 | −9 |

    392.

    | 14 −8 | | −2 | | 14 −8 | | −2 |

    393.

    | 9 3 | | 5 12 | | 9 3 | | 5 12 |

    394.

    5 + 4 | 15 3 | 5 + 4 | 15 3 |

    Translate Phrases to Expressions with Integers

    In the following exercises, translate each of the following phrases into expressions with positive or negative numbers.

    395.

    the opposite of 1616

    396.

    the opposite of −8−8

    397.

    negative 33

    398.

    1919 minus negative 1212

    399.

    a temperature of 1010 below zero

    400.

    an elevation of 85 feet85 feet below sea level

    Add Integers

    Model Addition of Integers

    In the following exercises, model the following to find the sum.

    401.

    3 + 7 3 + 7

    402.

    −2 + 6 −2 + 6

    403.

    5 + ( −4 ) 5 + ( −4 )

    404.

    −3 + ( −6 ) −3 + ( −6 )

    Simplify Expressions with Integers

    In the following exercises, simplify each expression.

    405.

    14 + 82 14 + 82

    406.

    −33 + ( −67 ) −33 + ( −67 )

    407.

    −75 + 25 −75 + 25

    408.

    54 + ( −28 ) 54 + ( −28 )

    409.

    11 + ( −15 ) + 3 11 + ( −15 ) + 3

    410.

    −19 + ( −42 ) + 12 −19 + ( −42 ) + 12

    411.

    −3 + 6 ( −1 + 5 ) −3 + 6 ( −1 + 5 )

    412.

    10 + 4 ( −3 + 7 ) 10 + 4 ( −3 + 7 )

    Evaluate Variable Expressions with Integers

    In the following exercises, evaluate each expression.

    413.

    n+4whenn+4when

    1. n=−1n=−1
    2. n=−20n=−20
    414.

    x+(−9)whenx+(−9)when

    1. x=3x=3
    2. x=−3x=−3
    415.

    ( x + y ) 3 when x = −4 , y = 1 ( x + y ) 3 when x = −4 , y = 1

    416.

    ( u + v ) 2 when u = −4 , v = 11 ( u + v ) 2 when u = −4 , v = 11

    Translate Word Phrases to Algebraic Expressions

    In the following exercises, translate each phrase into an algebraic expression and then simplify.

    417.

    the sum of −8 and 2 the sum of −8 and 2

    418.

    4 more than −12 4 more than −12

    419.

    10 more than the sum of −5 and −6 10 more than the sum of −5 and −6

    420.

    the sum of 3 and −5 , increased by 18 the sum of 3 and −5 , increased by 18

    Add Integers in Applications

    In the following exercises, solve.

    421.

    Temperature On Monday, the high temperature in Denver was −4 degrees.−4 degrees. Tuesday’s high temperature was 20 degrees20 degrees more. What was the high temperature on Tuesday?

    422.

    Credit Frida owed $75$75 on her credit card. Then she charged $21$21 more. What was her new balance?

    Subtract Integers

    Model Subtraction of Integers

    In the following exercises, model the following.

    423.

    6 1 6 1

    424.

    −4 ( −3 ) −4 ( −3 )

    425.

    2 ( −5 ) 2 ( −5 )

    426.

    −1 4 −1 4

    Simplify Expressions with Integers

    In the following exercises, simplify each expression.

    427.

    24 16 24 16

    428.

    19 ( −9 ) 19 ( −9 )

    429.

    −31 7 −31 7

    430.

    −40 ( −11 ) −40 ( −11 )

    431.

    −52 ( −17 ) 23 −52 ( −17 ) 23

    432.

    25 ( −3 9 ) 25 ( −3 9 )

    433.

    ( 1 7 ) ( 3 8 ) ( 1 7 ) ( 3 8 )

    434.

    3 2 7 2 3 2 7 2

    Evaluate Variable Expressions with Integers

    In the following exercises, evaluate each expression.

    435.

    x7whenx7when

    1. x=5x=5
    2. x=−4x=−4
    436.

    10ywhen10ywhen

    1. y=15y=15
    2. y=−16y=−16
    437.

    2 n 2 n + 5 when n = −4 2 n 2 n + 5 when n = −4

    438.

    −15 3 u 2 when u = −5 −15 3 u 2 when u = −5

    Translate Phrases to Algebraic Expressions

    In the following exercises, translate each phrase into an algebraic expression and then simplify.

    439.

    the difference of −12and5−12and5

    440.

    subtract 2323 from −50−50

    Subtract Integers in Applications

    In the following exercises, solve the given applications.

    441.

    Temperature One morning the temperature in Bangor, Maine was 18 degrees.18 degrees. By afternoon, it had dropped 20 degrees.20 degrees. What was the afternoon temperature?

    442.

    Temperature On January 4, the high temperature in Laredo, Texas was 78 degrees,78 degrees, and the high in Houlton, Maine was −28degrees.−28degrees. What was the difference in temperature of Laredo and Houlton?

    Multiply and Divide Integers

    Multiply Integers

    In the following exercises, multiply.

    443.

    −9 4 −9 4

    444.

    5 ( −7 ) 5 ( −7 )

    445.

    ( −11 ) ( −11 ) ( −11 ) ( −11 )

    446.

    −1 6 −1 6

    Divide Integers

    In the following exercises, divide.

    447.

    56 ÷ ( −8 ) 56 ÷ ( −8 )

    448.

    −120 ÷ ( −6 ) −120 ÷ ( −6 )

    449.

    −96 ÷ 12 −96 ÷ 12

    450.

    96 ÷ ( −16 ) 96 ÷ ( −16 )

    451.

    45 ÷ ( −1 ) 45 ÷ ( −1 )

    452.

    −162 ÷ ( −1 ) −162 ÷ ( −1 )

    Simplify Expressions with Integers

    In the following exercises, simplify each expression.

    453.

    5 ( −9 ) 3 ( −12 ) 5 ( −9 ) 3 ( −12 )

    454.

    ( −2 ) 5 ( −2 ) 5

    455.

    3 4 3 4

    456.

    ( −3 ) ( 4 ) ( −5 ) ( −6 ) ( −3 ) ( 4 ) ( −5 ) ( −6 )

    457.

    42 4 ( 6 9 ) 42 4 ( 6 9 )

    458.

    ( 8 15 ) ( 9 3 ) ( 8 15 ) ( 9 3 )

    459.

    −2 ( −18 ) ÷ 9 −2 ( −18 ) ÷ 9

    460.

    45 ÷ ( −3 ) 12 45 ÷ ( −3 ) 12

    Evaluate Variable Expressions with Integers

    In the following exercises, evaluate each expression.

    461.

    7 x 3 when x = −9 7 x 3 when x = −9

    462.

    16 2 n when n = −8 16 2 n when n = −8

    463.

    5 a + 8 b when a = −2 , b = −6 5 a + 8 b when a = −2 , b = −6

    464.

    x 2 + 5 x + 4 when x = −3 x 2 + 5 x + 4 when x = −3

    Translate Word Phrases to Algebraic Expressions

    In the following exercises, translate to an algebraic expression and simplify if possible.

    465.

    the product of −12−12 and 66

    466.

    the quotient of 33 and the sum of −7−7 and ss

    Solve Equations using Integers; The Division Property of Equality

    Determine Whether a Number is a Solution of an Equation

    In the following exercises, determine whether each number is a solution of the given equation.

    467.

    5x10=−355x10=−35

    1. x=−9x=−9
    2. x=−5x=−5
    3. x=5x=5
    468.

    8u+24=−328u+24=−32

    1. u=−7u=−7
    2. u=−1u=−1
    3. u=7u=7

    Using the Addition and Subtraction Properties of Equality

    In the following exercises, solve.

    469.

    a + 14 = 2 a + 14 = 2

    470.

    b 9 = −15 b 9 = −15

    471.

    c + ( −10 ) = −17 c + ( −10 ) = −17

    472.

    d ( −6 ) = −26 d ( −6 ) = −26

    Model the Division Property of Equality

    In the following exercises, write the equation modeled by the envelopes and counters. Then solve it.

    473.
    This image has two columns. In the first column there are three envelopes. In the second column there are two vertical rows. The first row includes five blue circles, the second row includes four blue circles.
    474.
    This figure has two columns. In the first column there are  two envelopes. In the second column there are two vertical rows, each includes four blue circles.

    Solve Equations Using the Division Property of Equality

    In the following exercises, solve each equation using the division property of equality and check the solution.

    475.

    8 p = 72 8 p = 72

    476.

    −12 q = 48 −12 q = 48

    477.

    −16 r = −64 −16 r = −64

    478.

    −5 s = −100 −5 s = −100

    Translate to an Equation and Solve.

    In the following exercises, translate and solve.

    479.

    The product of −6 and y is −42 The product of −6 and y is −42

    480.

    The difference of z and −13 is −18. The difference of z and −13 is −18.

    481.

    Four more than mm is −48.−48.

    482.

    The product of −21 and n is 63. The product of −21 and n is 63.

    Everyday Math
    483.

    Describe how you have used two topics from this chapter in your life outside of your math class during the past month.


    3.8.1: Review Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?