Skip to main content
Mathematics LibreTexts

10.8.2: Key Concepts

  • Page ID
    119006
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Key Concepts

    10.2 Use Multiplication Properties of Exponents

    • This is read aa to the mthmth power.
    • Product Property of Exponents
      • If aa is a real number and m,nm,n are counting numbers, then

        am·an=am+nam·an=am+n

      • To multiply with like bases, add the exponents.
    • Power Property for Exponents
      • If aa is a real number and m,nm,n are counting numbers, then

        (am)n =amn(am)n =amn

    • Product to a Power Property for Exponents
      • If aa and bb are real numbers and mm is a whole number, then

        (ab)m=ambm(ab)m=ambm

    10.3 Multiply Polynomials

    • Use the FOIL method for multiplying two binomials.
      Step 1. Multiply the First terms. .
      Step 2. Multiply the Outer terms.
      Step 3. Multiply the Inner terms.
      Step 4. Multiply the Last terms.
      Step 5. Combine like terms, when possible.
  • Multiplying Two Binomials: To multiply binomials, use the:
    • Distributive Property
    • FOIL Method
    • Vertical Method
  • Multiplying a Trinomial by a Binomial: To multiply a trinomial by a binomial, use the:
    • Distributive Property
    • Vertical Method
  • 10.4 Divide Monomials

    • Equivalent Fractions Property
      • If a,b,ca,b,c are whole numbers where b0,c0,b0,c0, then

        ab=a·cb·canda·cb·c=abab=a·cb·canda·cb·c=ab

    • Zero Exponent
      • If aa is a non-zero number, then a0=1.a0=1.
      • Any nonzero number raised to the zero power is 1.1.
    • Quotient Property for Exponents
      • If aa is a real number, a0,a0, and m,nm,n are whole numbers, then

        aman=amn,m>nandaman=1anm,n>maman=amn,m>nandaman=1anm,n>m

    • Quotient to a Power Property for Exponents
      • If aa and bb are real numbers, b0,b0, and mm is a counting number, then

        (ab)m=ambm(ab)m=ambm

      • To raise a fraction to a power, raise the numerator and denominator to that power.

    10.5 Integer Exponents and Scientific Notation

    • Summary of Exponent Properties
      • If a,ba,b are real numbers and m,nm,n are integers, then

        Product Propertyam·an=am+nPower Property(am)n=am·nProduct to a Power Property(ab)m=ambmQuotient Propertyaman=amn,a0Zero Exponent Propertya0=1,a0Quotient to a Power Property(ab)m=ambm,b0Definition of Negative Exponentan=1anProduct Propertyam·an=am+nPower Property(am)n=am·nProduct to a Power Property(ab)m=ambmQuotient Propertyaman=amn,a0Zero Exponent Propertya0=1,a0Quotient to a Power Property(ab)m=ambm,b0Definition of Negative Exponentan=1an

    • Convert from Decimal Notation to Scientific Notation: To convert a decimal to scientific notation:
      1. Step 1. Move the decimal point so that the first factor is greater than or equal to 1 but less than 10.
      2. Step 2. Count the number of decimal places, nn, that the decimal point was moved.
      3. Step 3. Write the number as a product with a power of 10.
        • If the original number is greater than 1, the power of 10 will be 10n10n.
        • If the original number is between 0 and 1, the power of 10 will be 10-n10-n.
      4. Step 4. Check.
    • Convert Scientific Notation to Decimal Form: To convert scientific notation to decimal form:
      1. Step 1. Determine the exponent, nn, on the factor 10.
      2. Step 2. Move the decimal nn places, adding zeros if needed.
        • If the exponent is positive, move the decimal point nn places to the right.
        • If the exponent is negative, move the decimal point |n||n| places to the left.
      3. Step 3. Check.

    10.6 Introduction to Factoring Polynomials

    • Find the greatest common factor.
      1. Step 1. Factor each coefficient into primes. Write all variables with exponents in expanded form.
      2. Step 2. List all factors—matching common factors in a column. In each column, circle the common factors.
      3. Step 3. Bring down the common factors that all expressions share.
      4. Step 4. Multiply the factors.
    • Distributive Property
      • If aa, bb, cc are real numbers, then
        a(b+c)=ab+aca(b+c)=ab+ac and ab+ac=a(b+c)ab+ac=a(b+c)
    • Factor the greatest common factor from a polynomial.
      1. Step 1. Find the GCF of all the terms of the polynomial.
      2. Step 2. Rewrite each term as a product using the GCF.
      3. Step 3. Use the Distributive Property ‘in reverse’ to factor the expression.
      4. Step 4. Check by multiplying the factors.

    10.8.2: Key Concepts is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?