Skip to main content
Mathematics LibreTexts

10.9.2: Practice Test

  • Page ID
    119009
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Practice Test

    626.

    For the polynomial 8y43y2+18y43y2+1

    1. Is it a monomial, binomial, or trinomial?
    2. What is its degree?

    In the following exercises, simplify each expression.

    627.

    ( 5 a 2 + 2 a 12 ) + ( 9 a 2 + 8 a 4 ) ( 5 a 2 + 2 a 12 ) + ( 9 a 2 + 8 a 4 )

    628.

    ( 10 x 2 3 x + 5 ) ( 4 x 2 6 ) ( 10 x 2 3 x + 5 ) ( 4 x 2 6 )

    629.

    ( 3 4 ) 3 ( 3 4 ) 3

    630.

    n · n 4 n · n 4

    631.

    ( 10 p 3 q 5 ) 2 ( 10 p 3 q 5 ) 2

    632.

    ( 8 x y 3 ) ( −6 x 4 y 6 ) ( 8 x y 3 ) ( −6 x 4 y 6 )

    633.

    4 u ( u 2 9 u + 1 ) 4 u ( u 2 9 u + 1 )

    634.

    ( s + 8 ) ( s + 9 ) ( s + 8 ) ( s + 9 )

    635.

    ( m + 3 ) ( 7 m 2 ) ( m + 3 ) ( 7 m 2 )

    636.

    ( 11 a 6 ) ( 5 a 1 ) ( 11 a 6 ) ( 5 a 1 )

    637.

    ( n 8 ) ( n 2 4 n + 11 ) ( n 8 ) ( n 2 4 n + 11 )

    638.

    ( 4 a + 9 b ) ( 6 a 5 b ) ( 4 a + 9 b ) ( 6 a 5 b )

    639.

    5 6 5 8 5 6 5 8

    640.

    ( x 3 · x 9 x 5 ) 2 ( x 3 · x 9 x 5 ) 2

    641.

    ( 47 a 18 b 23 c 5 ) 0 ( 47 a 18 b 23 c 5 ) 0

    642.

    24 r 3 s 6 r 2 s 7 24 r 3 s 6 r 2 s 7

    643.

    8 y 2 16 y + 20 4 y 8 y 2 16 y + 20 4 y

    644.

    ( 15 x y 3 35 x 2 y ) ÷ 5 x y ( 15 x y 3 35 x 2 y ) ÷ 5 x y

    645.

    4 −1 4 −1

    646.

    ( 2 y ) −3 ( 2 y ) −3

    647.

    p −3 · p −8 p −3 · p −8

    648.

    x 4 x −5 x 4 x −5

    In the following exercises, factor the greatest common factor from each polynomial.

    649.

    80 a 3 + 120 a 2 + 40 a 80 a 3 + 120 a 2 + 40 a

    650.

    −6 x 2 30 x −6 x 2 30 x

    651.

    According to www.cleanair.org, the amount of trash generated in the US in one year averages out to 112,000112,000 pounds of trash per person. Write this number in scientific notation.

    652.

    Convert 5.25×10−45.25×10−4 to decimal form.

    In the following exercises, simplify, and write your answer in decimal form.

    653.

    ( 2.4 × 10 8 ) ( 2 × 10 −5 ) ( 2.4 × 10 8 ) ( 2 × 10 −5 )

    654.

    9 × 10 4 3 × 10 −1 9 × 10 4 3 × 10 −1

    655.

    A hiker drops a pebble from a bridge 240240 feet above a canyon. The polynomial 16t2+24016t2+240 gives the height of the pebble tt seconds a after it was dropped. Find the height when t=3.t=3.


    10.9.2: Practice Test is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?