2.4.1: Exercises 2.4
- Page ID
- 63332
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Terms and Concepts
Exercise \(\PageIndex{1}\)
Why do changes on the inside of the function produce horizontal changes?
- Answer
-
Answers will vary, but should include the idea that changes on the inside are changes to the inputs, which are on the horizontal axis.
Exercise \(\PageIndex{2}\)
Why do changes on the outside of the function produce vertical changes?
- Answer
-
Answers will vary, but should include the idea that applying changes on the outside of the function affects the outputs, which are the y values (height of the graph).
Exercise \(\PageIndex{3}\)
In graphing the function \(g(x)=2 \ln{(x)} + 4\), which transformation should you apply first?
- Answer
-
The vertical stretch
Exercise \(\PageIndex{4}\)
In graphing the function \(f(x)=(2x-1)^3\), which transformation should you apply first?
- Answer
-
The horizontal shift
Exercise \(\PageIndex{5}\)
In graphing the function \(h(t)=3^{t+4}\), what is the base function and how is it being transformed?
- Answer
-
The base function is \(3^t\) and it is being shifted 4 units to the left
Problems
Graph each of the functions in exercises \(\PageIndex{6}\) - \(\PageIndex{10}\).
Exercise \(\PageIndex{6}\)
\(f(x)=-x^2+1\)
- Answer
-
Exercise \(\PageIndex{7}\)
\(f(x) = \left\{\begin{array}{cc} 2x+8 & x \leq -1 \\ -x+7 & x>-1 \end{array}\right.\)
- Answer
-
Exercise \(\PageIndex{8}\)
\(f(x) = \left\{\begin{array}{cc} -x^2 & x < 0 \\ (x-1)^2 & 0 \leq x <3 \end{array}\right.\)
- Answer
-
Exercise \(\PageIndex{9}\)
\(f(x) = e^x+1\)
- Answer
-
Exercise \(\PageIndex{10}\)
\(f(x) = \left\{\begin{array}{cc} \sin{(x)} & x < \pi \\ \cos{(x)} & x> \pi \end{array}\right.\)
- Answer
-
In exercises \(\PageIndex{11}\) - \(\PageIndex{15}\), graph and write an equation for each of the described functions.
Exercise \(\PageIndex{11}\)
The result of shifting \(g(x)=x^2\) up three units and to the left two units
- Answer
-
\(h(x)=(x+2)^2+3\)
Exercise \(\PageIndex{12}\)
Any even degree polynomial that is positive for \(-2 \leq x \leq 4\).
- Answer
-
Answers will vary, but an example is
\(h(x)=x^2+1\)
Exercise \(\PageIndex{13}\)
The result of shifting \(f(\theta) = -2\theta +3\) down two units and right 5 units.
- Answer
-
\(g(\theta) = -2(\theta-5) + 3 -2=-2\theta + 11\)
Exercise \(\PageIndex{14}\)
The piecewise function that consists of \(t^2\), shifted down one unit for \(t \leq -2\) and of the line with a slope of 3 and a y-intercept of 3 for \(t>-2\).
- Answer
-
Add texts here. Do not delete this text first.
\(f(t) = \left\{\begin{array}{cc} t^2-1 & t \leq 2 \\ 3t+3 & -2<x \end{array}\right.\)
Exercise \(\PageIndex{15}\)
The line with a slope of \(\frac{2}{3}\) that passes through the point \((1,f(2))\), where \(f(x)=x^2-1\).
- Answer
-
\(y-3 = \frac{2}{3} (x-1)\), or \(y=\frac{2}{3} x + \frac{7}{3}\)
In exercises \(\PageIndex{16}\) - \(\PageIndex{18}\), factor the given function, and graph the function.
Exercise \(\PageIndex{16}\)
\(b(x)=x^3+6x^2+12x+8\)
- Answer
-
\(b(x)=(x+2)^3\);
Exercise \(\PageIndex{17}\)
\(y(t) = t^2-6t+9\)
- Answer
-
\(y(t)=(t-3)^2\);
Exercise \(\PageIndex{18}\)
\(f(x) = x^2+4x+4\)
- Answer
-
\(f(x)=(x+2)^2\);
For each of
- \(f(x)=x^{2}-3x,\)
- \(\eta(\theta )=\cos(\theta ),\) and
- \(g(w)=3^{w}-w^{3},\)
write the equation for the new function that results from the transofmration(s) stated in exercises \(\PageIndex{19}\) - \(\PageIndex{24}\).
Exercise \(\PageIndex{19}\)
Add exercises text here.
- Answer
-
Shift up 3 units
\(x^2-3x+3\);
\(\cos{(\theta)} + 3\);
\(3^w - w^3 + 3\)
Exercise \(\PageIndex{20}\)
Shift right 2 units
- Answer
-
\((x-2)^2-3(x-2)\);
\(\cos{(\theta-2)}\);
\(3^{w-2} - (w-2)^3\)
Exercise \(\PageIndex{21}\)
Shift down 2 units and left 1 unit
- Answer
-
\((x+1)^2-3(x+1) -2\);
\(\cos{(\theta+1)} -2\);
\(3^{w+1} - (w+1)^3 -2\)
Exercise \(\PageIndex{22}\)
Shift down \(\pi\) units and right \(e\) units
- Answer
-
\((x-e)^2-3(x-e) - \pi\);
\(\cos{(\theta-e)} - \pi\);
\(3^{w-e} - (w-e)^3 - \pi\)
Exercise \(\PageIndex{23}\)
Flip across the x-axis
- Answer
-
\((-x)^2-3(-x)\);
\(\cos{(-\theta)}\);
\(3^{-w} - (-w)^3\)
Exercise \(\PageIndex{24}\)
Flip across the y-axis
- Answer
-
\(-(x^2-3x)\);
\(-\cos{(\theta)}\);
\(-(3^{-w} - w^3)\)
Answer each question in exercises \(\PageIndex{25}\) - \(\PageIndex{26}\) using the provided graphs.
Exercise \(\PageIndex{25}\)
Based on the shape of the graph of \(f(x)\) shown, below,
- could \(f(x)\) be an even polynomial? Why or why not?
- could \(f(x)\) be an odd polynomial? Why or why not?
- could \(f(x)\) be an exponential function? Why or why not?
- could \(f(x)\) be a trigonometric function? Why or why not?
- Answer
-
- no; it is not symmetric about the y-axis
- yes; it has rotational symmetry
- no; it does not have a horizontal asymptote
- no; it does not have a periodic (repeating) pattern
Exercise \(\PageIndex{26}\)
Based on the shape of the graph of \(g(x)\) shown, below,
- could \(g(x)\) be an even polynomial? Why or why not?
- could \(g(x)\) be an odd polynomial? Why or why not?
- could \(g(x)\) be an exponential function? Why or why not?
- could \(g(x)\) be a trigonometric function? Why or why not?
- Answer
-
- no; it is not symmetric about the y-axis
- no; it does not have rotational symmetry
- yes; it does not have a horizontal asymptote on one side and grows without bound on the other
- no; it does not have a periodic (repeating) pattern