# 3.3: Double-Angle and Half-Angle Formulas

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

A special case of the addition formulas is when the two angles being added are equal, resulting in the double-angle formulas:

\begin{align} \sin\;2\theta ~&=~ 2\;\sin\;\theta ~ \cos\;\theta\label{eqn:doublesin}\\ \cos\;2\theta ~&=~ \cos^2 \;\theta ~-~ \sin^2 \;\theta\label{eqn:doublecos}\\ \tan\;2\theta ~&=~ \frac{2\;\tan\;\theta}{1 ~-~ \tan^2 \;\theta}\label{eqn:doubletan} \end{align}

To derive the sine double-angle formula, we see that

$\sin\;2\theta ~=~ \sin\;(\theta+\theta) ~=~ \sin\;\theta ~ \cos\;\theta ~+~ \cos\;\theta ~ \sin\;\theta ~=~ 2\;\sin\;\theta ~ \cos\;\theta~. \nonumber$

Likewise, for the cosine double-angle formula, we have

$\cos\;2\theta ~=~ \cos\;(\theta+\theta) ~=~ \cos\;\theta~\cos\;\theta ~-~ \sin\;\theta~\sin\;\theta ~=~ \cos^2 \;\theta ~-~ \sin^2 \;\theta~,\nonumber$

and for the tangent we get

$\tan\;2\theta ~=~ \tan\;(\theta+\theta) ~=~ \frac{\tan\;\theta ~+~ \tan\;\theta}{1 ~-~ \tan\;\theta ~ \tan\;\theta} ~=~ \frac{2\;\tan\;\theta}{1 ~-~ \tan^2 \;\theta} \nonumber$

Using the identities $$\;\sin^2 \;\theta = 1 - \cos^2 \;\theta$$ and $$\;\cos^2 \;\theta = 1 - \sin^2 \;\theta$$, we get the following useful alternate forms for the cosine double-angle formula:

\begin{align} \cos\;2\theta ~&=~ 2\;\cos^2 \;\theta ~-~ 1\label{eqn:doublecosalt1}\\ &=~ 1 ~-~ 2\;\sin^2 \;\theta\label{eqn:doublecosalt2} \end{align} \nonumber

## Example 3.13

Prove that $$\;\sin\;3\theta ~=~ 3\;\sin\;\theta ~-~ 4\;\sin^3 \;\theta\;$$.

###### Solution

Using $$3\theta = 2\theta + \theta$$, the addition Equation for sine, and the double-angle Equations \ref{eqn:doublesin} and \ref{eqn:doublecosalt2}, we get:

\begin{align*} \sin\;3\theta ~&=~ \sin\;(2\theta+\theta)\\ \nonumber &=~ \sin\;2\theta~\cos\;\theta ~+~ \cos\;2\theta~\sin\;\theta\\ \nonumber &=~ (2\;\sin\;\theta~\cos\;\theta)\;\cos\;\theta ~+~ (1 - 2\;\sin^2 \;\theta)\;\sin\;\theta\\ \nonumber &=~ 2\;\sin\;\theta~\cos^2 \;\theta ~+~ \sin\;\theta ~-~ 2\;\sin^3 \;\theta\\ \nonumber &=~ 2\;\sin\;\theta\;(1 - \sin^2 \;\theta) ~+~ \sin\;\theta ~-~ 2\;\sin^3 \;\theta\\ \nonumber &=~ 3\;\sin\;\theta ~-~ 4\;\sin^3 \;\theta \end{align*} \nonumber

## Example 3.14

Prove that $$\;\sin\;4z ~=~ \dfrac{4\;\tan\;z~(1 - \tan^2 \;z)}{(1 + \tan^2 \;z)^2}\;$$.

###### Solution

Expand the right side and use $$1 + \tan^2 \;z= \sec^2 \;z\,$$:

\begin{align*} \dfrac{4\;\tan\;z~(1 - \tan^2 \;z)}{(1 + \tan^2 \;z)^2} ~&=~ \dfrac{4 \;\cdot\; \dfrac{\sin\;z}{\cos\;z} \;\cdot\; \left( \dfrac{\cos^2 \;z}{\cos^2 \;z} - \dfrac{\sin^2 \;z}{\cos^2 \;z} \right)}{( \sec^2 \;z )^2}\\ \nonumber &=~ \dfrac{4 \;\cdot\; \dfrac{\sin\;z}{\cos\;z} \;\cdot\; \dfrac{\cos\;2z}{\cos^2 \;z}}{\left( \dfrac{1}{\cos^2 \;z} \right)^2}\quad\qquad\text{(by Equation \ref{eqn:doublecos})}\\ \nonumber &=~ (4\;\sin\;z~\cos\;2z)\;\cos\;z\\ \nonumber &=~ 2\;(2\;\sin\;z~\cos\;z)\;\cos\;2z\\ \nonumber &=~ 2\;\sin\;2z~\cos\;2z\quad\qquad\text{(by Equation \ref{eqn:doublesin})}\\ \nonumber &=~ \sin\;4z\quad\qquad\text{(by Equation \ref{eqn:doublesin} with $$\theta$$ replaced by $$2z$$)} \end{align*} \nonumber

Note: Perhaps surprisingly, this seemingly obscure identity has found a use in physics, in the derivation of a solution of the sine-Gordon equation in the theory of nonlinear waves

Closely related to the double-angle formulas are the half-angle formulas:

\begin{align} \sin^2 \;\tfrac{1}{2}\theta ~&=~ \frac{1 \;-\; \cos\;\theta}{2}\label{eqn:halfsin}\\ \cos^2 \;\tfrac{1}{2}\theta ~&=~ \frac{1 \;+\; \cos\;\theta}{2}\label{eqn:halfcos}\\ \tan^2 \;\tfrac{1}{2}\theta ~&=~ \frac{1 \;-\; \cos\;\theta}{1 \;+\; \cos\;\theta}\label{eqn:halftan}\end{align}

These formulas are just the double-angle formulas rewritten with $$\theta$$ replaced by $$\tfrac{1}{2}\theta$$:

\begin{align*} \cos\;2\theta \;&=\; 1 \;-\; 2\;\sin^2 \;\theta ~\Rightarrow~ \sin^2 \;\theta \;=\; \frac{1 \;-\; \cos\;2\theta}{2} ~\Rightarrow~ \sin^2 \;\tfrac{1}{2}\theta \;=\; \frac{1 \;-\; \cos\;2\,(\tfrac{1}{2}\theta)}{2} \;=\; \frac{1 \;-\; \cos\;\theta}{2}\\ \nonumber \cos\;2\theta \;&=\; 2\;\cos^2 \;\theta\;-\; 1 ~\Rightarrow~ \cos^2 \;\theta \;=\; \frac{1 \;+\; \cos\;2\theta}{2} ~\Rightarrow~ \cos^2 \;\tfrac{1}{2}\theta \;=\; \frac{1 \;+\; \cos\;2\,(\tfrac{1}{2}\theta)}{2} \;=\; \frac{1 \;+\; \cos\;\theta}{2} \end{align*} \nonumber

The tangent half-angle Equation then follows easily:

$\tan^2 \;\tfrac{1}{2}\theta \;=\; \left( \dfrac{\sin\;\tfrac{1}{2}\theta}{\cos\;\tfrac{1}{2}\theta} \right)^2 \;=\; \dfrac{\sin^2 \;\tfrac{1}{2}\theta}{\cos^2 \;\tfrac{1}{2}\theta} \;=\; \dfrac{\tfrac{1 \;-\; \cos\;\theta}{2}}{\tfrac{1 \;+\; \cos\;\theta}{2}} \;=\; \frac{1 \;-\; \cos\;\theta}{1 \;+\; \cos\;\theta} \nonumber$

The half-angle formulas are often used (e.g. in calculus) to replace a squared trigonometric function by a nonsquared function, especially when $$2\theta$$ is used instead of $$\theta$$.

By taking square roots, we can write the above formulas in an alternate form:

\begin{align} \sin\;\tfrac{1}{2}\theta ~&=~ \pm\;\sqrt{\frac{1 \;-\; \cos\;\theta}{2}}\label{eqn:halfsinsq}\\ \cos\;\tfrac{1}{2}\theta ~&=~ \pm\;\sqrt{\frac{1 \;+\; \cos\;\theta}{2}}\label{eqn:halfcossq}\\ \tan\;\tfrac{1}{2}\theta ~&=~ \pm\;\sqrt{\frac{1 \;-\; \cos\;\theta}{1 \;+\; \cos\;\theta}}\label{eqn:halftansq} \end{align} \nonumber

In the above form, the sign in front of the square root is determined by the quadrant in which the angle $$\tfrac{1}{2}\theta$$ is located. For example, if $$\theta=300^\circ$$ then $$\tfrac{1}{2}\theta = 150^\circ$$ is in QII. So in this case $$\cos\;\tfrac{1}{2}\theta < 0$$ and hence we would have $$\cos\;\tfrac{1}{2}\theta = -\;\sqrt{\frac{1 \;+\; \cos\;\theta}{2}}$$.

In Equation \ref{eqn:halftansq}, multiplying the numerator and denominator inside the square root by $$(1 - \cos\;\theta)$$ gives

$\tan\;\tfrac{1}{2}\theta ~=~ \pm\;\sqrt{\frac{1 - \cos\;\theta}{1 + \cos\;\theta} \,\cdot\, \frac{1 - \cos\;\theta}{1 - \cos\;\theta}} ~=~ \pm\;\sqrt{\frac{(1 - \cos\;\theta)^2}{1 - \cos^2 \;\theta}} ~=~ \pm\;\sqrt{\frac{(1 - \cos\;\theta)^2}{\sin^2 \;\theta}} ~=~ \pm\;\frac{1 - \cos\;\theta}{\sin\;\theta} ~. \nonumber$

But $$1 - \cos\;\theta \ge 0$$, and it turns out (see Exercise 10) that $$\tan\;\tfrac{1}{2}\theta$$ and $$\sin\;\theta$$ always have the same sign. Thus, the minus sign in front of the last expression is not possible (since that would switch the signs of $$\tan\;\tfrac{1}{2}\theta$$ and $$\sin\;\theta$$), so we have:

$\tan\;\tfrac{1}{2}\theta ~=~ \frac{1 \;-\; \cos\;\theta}{\sin\;\theta}\label{eqn:halftanalt1}$

Multiplying the numerator and denominator in Equation \ref{eqn:halftanalt1} by $$1 + \cos\;\theta$$ gives

$\tan\;\tfrac{1}{2}\theta ~=~ \frac{1 \;-\; \cos\;\theta}{\sin\;\theta} \;\cdot\; \frac{1 \;+\; \cos\;\theta}{1 \;+\; \cos\;\theta} ~=~ \frac{1 \;-\; \cos^2 \;\theta}{\sin\;\theta\;(1 \;+\; \cos\;\theta)} ~=~ \frac{\sin^2 \;\theta}{\sin\;\theta\;(1 \;+\; \cos\;\theta)} ~, \nonumber$

so we also get:

$\tan\;\tfrac{1}{2}\theta ~=~ \frac{\sin\;\theta}{1 \;+\; \cos\;\theta}\label{eqn:halftanalt2}$

Taking reciprocals in Equations \ref{eqn:halftanalt1} and \ref{eqn:halftanalt2} gives:

$\cot\;\tfrac{1}{2}\theta ~=~ \frac{\sin\;\theta}{1 \;-\; \cos\;\theta} ~=~ \frac{1 \;+\; \cos\;\theta}{\sin\;\theta}\label{eqn:halfcot}$

## Example 3.15

Prove the identity $$\;\sec^2 \;\tfrac{1}{2}\theta ~=~\dfrac{2\;\sec\;\theta}{\sec\;\theta \;+\; 1}\;$$.

###### Solution

Since secant is the reciprocal of cosine, taking the reciprocal of Equation \ref{eqn:halfcos} for $$\;\cos^2 \;\tfrac{1}{2}\theta$$ gives us

$\sec^2 \;\tfrac{1}{2}\theta ~=~ \frac{2}{1 \;+\; \cos\;\theta} ~=~ \frac{2}{1 \;+\; \cos\;\theta} \;\cdot\; \frac{\sec\;\theta}{\sec\;\theta} ~=~ \frac{2\;\sec\;\theta}{\sec\;\theta \;+\; 1} ~. \nonumber$

This page titled 3.3: Double-Angle and Half-Angle Formulas is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Michael Corral via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.