Skip to main content
Mathematics LibreTexts

3.3: Double-Angle and Half-Angle Formulas

  • Page ID
    3287
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A special case of the addition formulas is when the two angles being added are equal, resulting in the double-angle formulas:

    \[\begin{align} \sin\;2\theta ~&=~ 2\;\sin\;\theta ~ \cos\;\theta\label{eqn:doublesin}\\
    \cos\;2\theta ~&=~ \cos^2 \;\theta ~-~ \sin^2 \;\theta\label{eqn:doublecos}\\
    \tan\;2\theta ~&=~ \frac{2\;\tan\;\theta}{1 ~-~ \tan^2 \;\theta}\label{eqn:doubletan} \end{align} \]

    To derive the sine double-angle formula, we see that

    \[\sin\;2\theta ~=~ \sin\;(\theta+\theta) ~=~ \sin\;\theta ~ \cos\;\theta ~+~ \cos\;\theta ~ \sin\;\theta ~=~ 2\;\sin\;\theta ~ \cos\;\theta~. \nonumber \]

    Likewise, for the cosine double-angle formula, we have

    \[ \cos\;2\theta ~=~ \cos\;(\theta+\theta) ~=~ \cos\;\theta~\cos\;\theta ~-~ \sin\;\theta~\sin\;\theta ~=~ \cos^2 \;\theta ~-~ \sin^2 \;\theta~,\nonumber \]

    and for the tangent we get

    \[ \tan\;2\theta ~=~ \tan\;(\theta+\theta) ~=~ \frac{\tan\;\theta ~+~ \tan\;\theta}{1 ~-~ \tan\;\theta ~ \tan\;\theta} ~=~
    \frac{2\;\tan\;\theta}{1 ~-~ \tan^2 \;\theta} \nonumber \]

    Using the identities \(\;\sin^2 \;\theta = 1 - \cos^2 \;\theta \) and \(\;\cos^2 \;\theta = 1 - \sin^2 \;\theta \), we get the following useful alternate forms for the cosine double-angle formula:

    \[\begin{align} \cos\;2\theta ~&=~ 2\;\cos^2 \;\theta ~-~ 1\label{eqn:doublecosalt1}\\
    &=~ 1 ~-~ 2\;\sin^2 \;\theta\label{eqn:doublecosalt2}
    \end{align} \nonumber \]

    Example 3.13

    Prove that \(\;\sin\;3\theta ~=~ 3\;\sin\;\theta ~-~ 4\;\sin^3 \;\theta\; \).

    Solution

    Using \(3\theta = 2\theta + \theta \), the addition Equation for sine, and the double-angle Equations \ref{eqn:doublesin} and \ref{eqn:doublecosalt2}, we get:

    \[ \begin{align*}
    \sin\;3\theta ~&=~ \sin\;(2\theta+\theta)\\ \nonumber
    &=~ \sin\;2\theta~\cos\;\theta ~+~ \cos\;2\theta~\sin\;\theta\\ \nonumber
    &=~ (2\;\sin\;\theta~\cos\;\theta)\;\cos\;\theta ~+~ (1 - 2\;\sin^2 \;\theta)\;\sin\;\theta\\ \nonumber
    &=~ 2\;\sin\;\theta~\cos^2 \;\theta ~+~ \sin\;\theta ~-~ 2\;\sin^3 \;\theta\\ \nonumber
    &=~ 2\;\sin\;\theta\;(1 - \sin^2 \;\theta) ~+~ \sin\;\theta ~-~ 2\;\sin^3 \;\theta\\ \nonumber
    &=~ 3\;\sin\;\theta ~-~ 4\;\sin^3 \;\theta
    \end{align*} \nonumber \]

    Example 3.14

    Prove that \(\;\sin\;4z ~=~ \dfrac{4\;\tan\;z~(1 - \tan^2 \;z)}{(1 + \tan^2 \;z)^2}\; \).

    Solution

    Expand the right side and use \(1 + \tan^2 \;z= \sec^2 \;z\,\):

    \[ \begin{align*}
    \dfrac{4\;\tan\;z~(1 - \tan^2 \;z)}{(1 + \tan^2 \;z)^2} ~&=~
    \dfrac{4 \;\cdot\; \dfrac{\sin\;z}{\cos\;z} \;\cdot\; \left( \dfrac{\cos^2 \;z}{\cos^2 \;z} -
    \dfrac{\sin^2 \;z}{\cos^2 \;z} \right)}{( \sec^2 \;z )^2}\\ \nonumber
    &=~ \dfrac{4 \;\cdot\; \dfrac{\sin\;z}{\cos\;z} \;\cdot\; \dfrac{\cos\;2z}{\cos^2 \;z}}{\left(
    \dfrac{1}{\cos^2 \;z} \right)^2}\quad\qquad\text{(by Equation \ref{eqn:doublecos})}\\ \nonumber
    &=~ (4\;\sin\;z~\cos\;2z)\;\cos\;z\\ \nonumber
    &=~ 2\;(2\;\sin\;z~\cos\;z)\;\cos\;2z\\ \nonumber
    &=~ 2\;\sin\;2z~\cos\;2z\quad\qquad\text{(by Equation \ref{eqn:doublesin})}\\ \nonumber
    &=~ \sin\;4z\quad\qquad\text{(by Equation \ref{eqn:doublesin} with \(\theta \) replaced by \(2z\))}
    \end{align*} \nonumber \]

    Note: Perhaps surprisingly, this seemingly obscure identity has found a use in physics, in the derivation of a solution of the sine-Gordon equation in the theory of nonlinear waves

    Closely related to the double-angle formulas are the half-angle formulas:

    \[\begin{align} \sin^2 \;\tfrac{1}{2}\theta ~&=~ \frac{1 \;-\; \cos\;\theta}{2}\label{eqn:halfsin}\\
    \cos^2 \;\tfrac{1}{2}\theta ~&=~ \frac{1 \;+\; \cos\;\theta}{2}\label{eqn:halfcos}\\
    \tan^2 \;\tfrac{1}{2}\theta ~&=~ \frac{1 \;-\; \cos\;\theta}{1 \;+\; \cos\;\theta}\label{eqn:halftan}\end{align} \]

    These formulas are just the double-angle formulas rewritten with \(\theta \) replaced by \(\tfrac{1}{2}\theta\):

    \[ \begin{align*}
    \cos\;2\theta \;&=\; 1 \;-\; 2\;\sin^2 \;\theta ~\Rightarrow~ \sin^2 \;\theta \;=\; \frac{1 \;-\; \cos\;2\theta}{2}
    ~\Rightarrow~ \sin^2 \;\tfrac{1}{2}\theta \;=\; \frac{1 \;-\; \cos\;2\,(\tfrac{1}{2}\theta)}{2} \;=\;
    \frac{1 \;-\; \cos\;\theta}{2}\\ \nonumber
    \cos\;2\theta \;&=\; 2\;\cos^2 \;\theta\;-\; 1 ~\Rightarrow~ \cos^2 \;\theta \;=\; \frac{1 \;+\; \cos\;2\theta}{2}
    ~\Rightarrow~ \cos^2 \;\tfrac{1}{2}\theta \;=\; \frac{1 \;+\; \cos\;2\,(\tfrac{1}{2}\theta)}{2} \;=\;
    \frac{1 \;+\; \cos\;\theta}{2}
    \end{align*} \nonumber \]

    The tangent half-angle Equation then follows easily:

    \[
    \tan^2 \;\tfrac{1}{2}\theta \;=\; \left( \dfrac{\sin\;\tfrac{1}{2}\theta}{\cos\;\tfrac{1}{2}\theta} \right)^2
    \;=\; \dfrac{\sin^2 \;\tfrac{1}{2}\theta}{\cos^2 \;\tfrac{1}{2}\theta} \;=\;
    \dfrac{\tfrac{1 \;-\; \cos\;\theta}{2}}{\tfrac{1 \;+\; \cos\;\theta}{2}} \;=\;
    \frac{1 \;-\; \cos\;\theta}{1 \;+\; \cos\;\theta}
    \nonumber \]

    The half-angle formulas are often used (e.g. in calculus) to replace a squared trigonometric function by a nonsquared function, especially when \(2\theta \) is used instead of \(\theta \).

    By taking square roots, we can write the above formulas in an alternate form:

    \[\begin{align}
    \sin\;\tfrac{1}{2}\theta ~&=~ \pm\;\sqrt{\frac{1 \;-\; \cos\;\theta}{2}}\label{eqn:halfsinsq}\\
    \cos\;\tfrac{1}{2}\theta ~&=~ \pm\;\sqrt{\frac{1 \;+\; \cos\;\theta}{2}}\label{eqn:halfcossq}\\
    \tan\;\tfrac{1}{2}\theta ~&=~ \pm\;\sqrt{\frac{1 \;-\; \cos\;\theta}{1 \;+\; \cos\;\theta}}\label{eqn:halftansq}
    \end{align} \nonumber \]

    In the above form, the sign in front of the square root is determined by the quadrant in which the angle \(\tfrac{1}{2}\theta \) is located. For example, if \(\theta=300^\circ \) then \(\tfrac{1}{2}\theta = 150^\circ \) is in QII. So in this case \(\cos\;\tfrac{1}{2}\theta < 0 \) and hence we would have \(\cos\;\tfrac{1}{2}\theta = -\;\sqrt{\frac{1 \;+\; \cos\;\theta}{2}} \).

    In Equation \ref{eqn:halftansq}, multiplying the numerator and denominator inside the square root by \((1 - \cos\;\theta) \) gives

    \[
    \tan\;\tfrac{1}{2}\theta ~=~ \pm\;\sqrt{\frac{1 - \cos\;\theta}{1 + \cos\;\theta} \,\cdot\,
    \frac{1 - \cos\;\theta}{1 - \cos\;\theta}} ~=~
    \pm\;\sqrt{\frac{(1 - \cos\;\theta)^2}{1 - \cos^2 \;\theta}} ~=~
    \pm\;\sqrt{\frac{(1 - \cos\;\theta)^2}{\sin^2 \;\theta}} ~=~ \pm\;\frac{1 - \cos\;\theta}{\sin\;\theta} ~.
    \nonumber \]

    But \(1 - \cos\;\theta \ge 0 \), and it turns out (see Exercise 10) that \(\tan\;\tfrac{1}{2}\theta \) and \(\sin\;\theta \) always have the same sign. Thus, the minus sign in front of the last expression is not possible (since that would switch the signs of \(\tan\;\tfrac{1}{2}\theta \) and \(\sin\;\theta\)), so we have:

    \[\tan\;\tfrac{1}{2}\theta ~=~ \frac{1 \;-\; \cos\;\theta}{\sin\;\theta}\label{eqn:halftanalt1} \]

    Multiplying the numerator and denominator in Equation \ref{eqn:halftanalt1} by \(1 + \cos\;\theta \) gives

    \[
    \tan\;\tfrac{1}{2}\theta ~=~ \frac{1 \;-\; \cos\;\theta}{\sin\;\theta} \;\cdot\;
    \frac{1 \;+\; \cos\;\theta}{1 \;+\; \cos\;\theta} ~=~ \frac{1 \;-\; \cos^2 \;\theta}{\sin\;\theta\;(1 \;+\; \cos\;\theta)}
    ~=~ \frac{\sin^2 \;\theta}{\sin\;\theta\;(1 \;+\; \cos\;\theta)} ~,
    \nonumber \]

    so we also get:

    \[ \tan\;\tfrac{1}{2}\theta ~=~ \frac{\sin\;\theta}{1 \;+\; \cos\;\theta}\label{eqn:halftanalt2} \]

    Taking reciprocals in Equations \ref{eqn:halftanalt1} and \ref{eqn:halftanalt2} gives:

    \[ \cot\;\tfrac{1}{2}\theta ~=~ \frac{\sin\;\theta}{1 \;-\; \cos\;\theta} ~=~
    \frac{1 \;+\; \cos\;\theta}{\sin\;\theta}\label{eqn:halfcot} \]

    Example 3.15

    Prove the identity \(\;\sec^2 \;\tfrac{1}{2}\theta ~=~\dfrac{2\;\sec\;\theta}{\sec\;\theta \;+\; 1}\; \).

    Solution

    Since secant is the reciprocal of cosine, taking the reciprocal of Equation \ref{eqn:halfcos} for \(\;\cos^2 \;\tfrac{1}{2}\theta \) gives us

    \[\sec^2 \;\tfrac{1}{2}\theta ~=~ \frac{2}{1 \;+\; \cos\;\theta}
    ~=~ \frac{2}{1 \;+\; \cos\;\theta} \;\cdot\; \frac{\sec\;\theta}{\sec\;\theta}
    ~=~ \frac{2\;\sec\;\theta}{\sec\;\theta \;+\; 1} ~. \nonumber \]


    This page titled 3.3: Double-Angle and Half-Angle Formulas is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Michael Corral via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?