Skip to main content
Mathematics LibreTexts

3.4: Other Identities

  • Page ID
    3288
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Though the identities in this section fall under the category of "other'', they are perhaps (along with \(\cos^2 \;\theta + \sin^2 \;\theta = 1\)) the most widely used identities in practice. It is very common to encounter terms such as \(\;\sin\;A + \sin\;B\; \) or \(\;\sin\;A~\cos\;B\; \) in calculations, so we will now derive identities for those expressions. First, we have what are often called the product-to-sum formulas:

    \[\begin{align}\sin\;A~\cos\;B ~&=~ \phantom{-}\tfrac{1}{2}\;(\sin\;(A+B) ~+~ \sin\;(A-B))\label{eqn:p2ssincos}\\
    \cos\;A~\sin\;B ~&=~ \phantom{-}\tfrac{1}{2}\;(\sin\;(A+B) ~-~ \sin\;(A-B))\label{eqn:p2scossin}\\
    \cos\;A~\cos\;B ~&=~ \phantom{-}\tfrac{1}{2}\;(\cos\;(A+B) ~+~ \cos\;(A-B))\label{eqn:p2scoscos}\\
    \sin\;A~\sin\;B ~&=~ -\tfrac{1}{2}\;(\cos\;(A+B) ~-~ \cos\;(A-B))\label{eqn:p2ssinsin}
    \end{align} \nonumber \]

    We will prove the first formula; the proofs of the others are similar (see Exercises 1-3). We see that
    \[\nonumber \require{cancel} \begin{align*}
    \sin\;(A+B) ~+~ \sin\;(A-B) ~&=~ (\sin\;A~\cos\;B ~+~ \cancel{\cos\;A~\sin\;B}) ~+~
    (\sin\;A~\cos\;B ~-~ \cancel{\cos\;A~\sin\;B})\\ \nonumber
    &=~ 2\;\sin\;A~\cos\;B ~,
    \end{align*} \nonumber \]
    so Equation \ref{eqn:p2ssincos} follows upon dividing both sides by \(2 \). Notice how in each of the above identities a product (e.g. \(\sin\;A~\cos\;B\)) of trigonometric functions is shown to be equivalent to a sum (e.g. \(\tfrac{1}{2}\;(\sin\;(A+B) ~+~ \sin\;(A-B))\)) of such functions. We can go in the opposite direction, with the sum-to-product formulas:

    \[\begin{align}
    \sin\;A ~+~ \sin\;B ~&=~ \phantom{-}2\;\sin\;\tfrac{1}{2}(A+B)~
    \cos\;\tfrac{1}{2}(A-B)\label{eqn:s2psinpsin}\\
    \sin\;A ~-~ \sin\;B ~&=~ \phantom{-}2\;\cos\;\tfrac{1}{2}(A+B)~
    \sin\;\tfrac{1}{2}(A-B)\label{eqn:s2psinmsin}\\
    \cos\;A ~+~ \cos\;B ~&=~ \phantom{-}2\;\cos\;\tfrac{1}{2}(A+B)~
    \cos\;\tfrac{1}{2}(A-B)\label{eqn:s2pcospcos}\\
    \cos\;A ~-~ \cos\;B ~&=~ -2\;\sin\;\tfrac{1}{2}(A+B)~\sin\;\tfrac{1}{2}(A-B)\label{eqn:s2pcosmcos}
    \end{align} \nonumber \]

    These formulas are just the product-to-sum formulas rewritten by using some clever substitutions: let \(x=\frac{1}{2}(A+B) \) and \(y=\frac{1}{2}(A-B) \). Then \(x+y=A \) and \(x-y=B \). For example, to derive Equation \ref{eqn:s2pcospcos}, make the above substitutions in Equation \ref{eqn:p2scoscos} to get
    \[\nonumber \begin{align*}
    \cos\;A ~+~ \cos\;B ~&=~ \cos\;(x+y) ~+~ \cos\;(x-y)\\ \nonumber
    &=~ 2\;\cdot\;\tfrac{1}{2}(\cos\;(x+y) ~+~ \cos\;(x-y))\\ \nonumber
    &=~ 2\;\cos\;x~\cos\;y\qquad\qquad\text{(by Equation \ref{eqn:p2scoscos})}\\ \nonumber
    &=~ 2\;\cos\;\tfrac{1}{2}(A+B)~\cos\;\tfrac{1}{2}(A-B) ~.
    \end{align*} \nonumber \]
    The proofs of the other sum-to-product formulas are similar (see Exercises 4-6).

    Example 3.16

    We are now in a position to prove Mollweide's equations, which we introduced in Section 2.3: For any triangle \(\triangle\,ABC \),

    \[\nonumber \frac{a-b}{c} ~=~ \frac{\sin\;\frac{1}{2}(A-B)}{\cos\;\frac{1}{2}C} \qquad\text{and}\qquad
    \frac{a+b}{c} ~=~ \frac{\cos\;\frac{1}{2}(A-B)}{\sin\;\frac{1}{2}C} ~. \nonumber \]

    First, since \(C=2\;\cdot\;\tfrac{1}{2}C \), by the double-angle formula we have \(\;\sin\;C = 2\;\sin\;\tfrac{1}{2}C~\cos\;\tfrac{1}{2}C \). Thus,

    \[\nonumber \require{cancel} \begin{align*}
    \frac{a-b}{c} ~&=~ \frac{a}{c} ~-~ \frac{b}{c}
    ~=~ \frac{\sin\;A}{\sin\;C} ~-~ \frac{\sin\;B}{\sin\;C}\quad\text{(by the Law of Sines)}\\ \nonumber
    &=~ \frac{\sin\;A ~-~ \sin\;B}{\sin\;C} ~=~
    \frac{\sin\;A ~-~ \sin\;B}{2\;\sin\;\tfrac{1}{2}C~\cos\;\tfrac{1}{2}C}\\ \nonumber
    &=~ \frac{2\;\cos\;\tfrac{1}{2}(A+B)~\sin\;\tfrac{1}{2}(A-B)}{2\;\sin\;\tfrac{1}{2}C~
    \cos\;\tfrac{1}{2}C}\quad\text{(by Equation \ref{eqn:s2psinmsin})}\\ \nonumber
    &=~ \frac{\cos\;\tfrac{1}{2}(180^\circ - C)~\sin\;\tfrac{1}{2}(A-B)}{\sin\;\tfrac{1}{2}C~
    \cos\;\tfrac{1}{2}C}\quad\text{(since \(A+B=180^\circ - C\))}\\ \nonumber
    &=~ \frac{\cancel{\cos\;(90^\circ - \tfrac{1}{2}C)}~\sin\;\tfrac{1}{2}(A-B)}{
    \cancel{\sin\;\tfrac{1}{2}C}~\cos\;\tfrac{1}{2}C}\\ \nonumber
    &=~ \frac{\sin\;\frac{1}{2}(A-B)}{\cos\;\frac{1}{2}C}\quad\text{(since \(\;\cos\;(90^\circ -
    \tfrac{1}{2}C) = \sin\;\tfrac{1}{2}C\))}~.
    \end{align*} \nonumber \]

    This proves the first equation. The proof of the other equation is similar (see Exercise 7).

    Example 3.17

    Using Mollweide's equations, we can prove the Law of Tangents: For any triangle \(\triangle\,ABC \),

    \[\nonumber \frac{a-b}{a+b} ~=~ \frac{\tan\;\frac{1}{2}(A-B)}{\tan\;\frac{1}{2}(A+B)} ~,\quad
    \frac{b-c}{b+c} ~=~ \frac{\tan\;\frac{1}{2}(B-C)}{\tan\;\frac{1}{2}(B+C)} ~,\quad
    \frac{c-a}{c+a} ~=~ \frac{\tan\;\frac{1}{2}(C-A)}{\tan\;\frac{1}{2}(C+A)} ~. \nonumber \]

    We need only prove the first equation; the other two are obtained by cycling through the letters. We see that

    \[\nonumber \begin{align*}
    \frac{a-b}{a+b} ~&=~ \dfrac{\dfrac{a-b}{c}}{\dfrac{a+b}{c}} ~=~
    \dfrac{\dfrac{\sin\;\tfrac{1}{2}(A-B)}{\cos\;\tfrac{1}{2}C}}{
    \dfrac{\cos\;\tfrac{1}{2}(A-B)}{\sin\;\tfrac{1}{2}C}}\quad\text{(by Mollweide's equations)}\\ \nonumber
    &=~ \dfrac{\sin\;\tfrac{1}{2}(A-B)}{\cos\;\tfrac{1}{2}(A-B)} \;\cdot\;
    \dfrac{\sin\;\tfrac{1}{2}C}{\cos\;\tfrac{1}{2}C}\\ \nonumber
    &=~ \tan\;\tfrac{1}{2}(A-B) \;\cdot\; \tan\;\tfrac{1}{2}C ~=~
    \tan\;\tfrac{1}{2}(A-B) \;\cdot\; \tan\;(90^\circ - \tfrac{1}{2}(A+B))
    \quad\text{(since \(C=180^\circ - (A+B)\))}\\ \nonumber
    &=~ \tan\;\tfrac{1}{2}(A-B) \;\cdot\; \cot\;\tfrac{1}{2}(A+B)\quad\text{(since \(\tan\;(90^\circ
    - \tfrac{1}{2}(A+B)) = \cot\;\tfrac{1}{2}(A+B) \), see Section 1.5)}\\ \nonumber
    &=~ \frac{\tan\;\frac{1}{2}(A-B)}{\tan\;\frac{1}{2}(A+B)} ~.\quad\textbf{QED} \end{align*} \nonumber \]

    Example 3.18

    For any triangle \(\triangle\,ABC \), show that
    \[\nonumber
    \cos\;A ~+~ \cos\;B ~+~ \cos\;C ~=~ 1 ~+~
    4\;\sin\;\tfrac{1}{2}A~\sin\;\tfrac{1}{2}B~\sin\;\tfrac{1}{2}C ~.
    \nonumber \]

    Solution

    Since \(\;\cos\;(A+B+C) = \cos\;180^\circ = -1 \), we can rewrite the left side as

    \[\nonumber \begin{align*}
    \cos\;A \;+\; \cos\;B \;+\; \cos\;C ~&=~ 1 \;+\; (\cos\;(A+B+C) \;+\; \cos\;C) \;+\; (\cos\;A
    \;+\; \cos\;B)~~\text{, so by Equation \ref{eqn:s2pcospcos}}\\ \nonumber
    &=~ 1 \;+\; 2\;\cos\;\tfrac{1}{2}(A+B+2C)~\cos\;\tfrac{1}{2}(A+B) \;+\;
    2\;\cos\;\tfrac{1}{2}(A+B)~\cos\;\tfrac{1}{2}(A-B)\\ \nonumber
    &=~ 1 \;+\; 2\;\cos\;\tfrac{1}{2}(A+B)~\left( \cos\;\tfrac{1}{2}(A+B+2C) \;+\;
    \cos\;\tfrac{1}{2}(A-B) \right) ~~\text{, so}\\ \nonumber
    &=~ 1 \;+\; 2\;\cos\;\tfrac{1}{2}(A+B)\;\cdot\;2\;\cos\;\tfrac{1}{2}(A+C)~
    \cos\;\tfrac{1}{2}(B+C)~~\text{by Equation \ref{eqn:s2pcospcos},}\end{align*} \nonumber \]
    since \(\tfrac{1}{2}\left( \tfrac{1}{2}(A+B+2C) + \tfrac{1}{2}(A-B) \right) = \tfrac{1}{2}(A+C) \) and \(\tfrac{1}{2}\left( \tfrac{1}{2}(A+B+2C) - \tfrac{1}{2}(A-B) \right) = \tfrac{1}{2}(B+C) \). Thus,}
    \[\nonumber \begin{align*} \cos\;A \;+\; \cos\;B \;+\; \cos\;C ~&=~
    1 \;+\; 4\;\cos\;(90^\circ - \tfrac{1}{2}C)~\cos\;(90^\circ - \tfrac{1}{2}B)~
    \cos\;(90^\circ - \tfrac{1}{2}A)\\ \nonumber
    &=~ 1 \;+\; 4\;\sin\;\tfrac{1}{2}C~\sin\;\tfrac{1}{2}B~\sin\;\tfrac{1}{2}A
    ~~,\text{ so rearranging the order gives}\\ \nonumber
    &=~ 1 \;+\; 4\;\sin\;\tfrac{1}{2}A~\sin\;\tfrac{1}{2}B~\sin\;\tfrac{1}{2}C ~.
    \end{align*} \nonumber \]

    Example 3.19

    For any triangle \(\triangle\,ABC \), show that \(\;\sin\;\tfrac{1}{2}A~\sin\;\tfrac{1}{2}B~ \sin\;\tfrac{1}{2}C \;\le\; \frac{1}{8}\; \).

    Solution

    Let \(u=\sin\;\tfrac{1}{2}A~\sin\;\tfrac{1}{2}B~\sin\;\tfrac{1}{2}C \). Apply Equation \ref{eqn:p2ssinsin} to the first two terms in \(u \) to get

    \[\nonumber u ~=~ -\tfrac{1}{2}\;(\cos\;\tfrac{1}{2}(A+B) \;-\; \cos\;\tfrac{1}{2}(A-B))~
    \sin\;\tfrac{1}{2}C ~=~ \tfrac{1}{2}\;(\cos\;\tfrac{1}{2}(A-B) \;-\;
    \cos\;\tfrac{1}{2}(A+B))~\cos\;\tfrac{1}{2}(A+B) ~, \nonumber \]

    since \(\;\sin\;\tfrac{1}{2}C = \cos\;\tfrac{1}{2}(A+B) \), as we saw in Example 3.18. Multiply both sides by \(2 \) to get
    \[\nonumber
    \cos^2 \;\tfrac{1}{2}(A+B) ~-~ \cos\;\tfrac{1}{2}(A-B)~\cos\;\tfrac{1}{2}(A+B) ~+~ 2u ~=~ 0 ~,
    \nonumber \]
    after rearranging the terms. Notice that the expression above is a quadratic equation in the term \(\;\cos\;\tfrac{1}{2}(A+B) \). So by the quadratic formula,
    \[\nonumber
    \cos\;\tfrac{1}{2}(A+B) ~=~ \frac{\cos\;\tfrac{1}{2}(A-B) \;\pm\;
    \sqrt{\cos^2 \;\tfrac{1}{2}(A-B) - 4(1)(2u)}}{2} ~~,
    \nonumber \]
    which has a real solution only if the quantity inside the square root is nonnegative. But we know that \(\;\cos\;\tfrac{1}{2}(A+B)\; \) is a real number (and, hence, a solution exists), so we must have
    \[\nonumber
    \cos^2 \;\tfrac{1}{2}(A-B) \;- \; 8u ~\ge~ 0 \quad\Rightarrow\quad u ~\le~ \tfrac{1}{8}\;
    \cos^2 \;\tfrac{1}{2}(A-B) ~\le~ \tfrac{1}{8} \quad\Rightarrow\quad
    \;\sin\;\tfrac{1}{2}A~\sin\;\tfrac{1}{2}B~\sin\;\tfrac{1}{2}C ~\le~ \tfrac{1}{8} ~.
    \nonumber \]

    Example 3.20

    For any triangle \(\triangle\,ABC \), show that \(\;1 ~<~ \cos\;A + \cos\;B + \cos\;C ~\le~
    \tfrac{3}{2}\; \).

    Solution

    Since \(0^\circ < A,\; B,\; C < 180^\circ \), the sines of \(\tfrac{1}{2}A \), \(\tfrac{1}{2}B \), and \(\tfrac{1}{2}C \) are all positive, so

    \[\nonumber \cos\;A \;+\; \cos\;B \;+\; \cos\;C ~=~ 1 \;+\;
    4\;\sin\;\tfrac{1}{2}A~\sin\;\tfrac{1}{2}B~\sin\;\tfrac{1}{2}C ~ > ~ 1 \nonumber \]

    by Example 3.18. Also, by Examples 3.18 and 3.19 we have

    \[\cos\;A \;+\; \cos\;B \;+\; \cos\;C ~=~ 1 \;+\;
    4\;\sin\;\tfrac{1}{2}A~\sin\;\tfrac{1}{2}B~\sin\;\tfrac{1}{2}C ~\le~ 1 \;+\;
    4\;\cdot\;\tfrac{1}{8} ~=~ \tfrac{3}{2} ~.\nonumber \]

    Hence, \(\;1 ~<~ \cos\;A + \cos\;B + \cos\;C ~\le~ \tfrac{3}{2}\; \).

    Example 3.21

    Recall Snell's law from Example 3.12 in Section 3.2: \(n_1 ~\sin\;\theta_1 = n_2 ~\sin\;\theta_2 \). Use it to show that the p-polarization transmission Fresnel coefficient defined by

    \[ t_{1\;2\;p} ~=~ \frac{2\;n_1 ~\cos\;\theta_1}{n_2 ~\cos\;\theta_1 ~+~ n_1 ~\cos\;\theta_2}\label{3.45} \]

    can be written as:

    \[ t_{1\;2\;p} ~=~ \frac{2\;\cos\;\theta_1~\sin\;\theta_2}{\sin\;(\theta_1 + \theta_2)~
    \cos\;(\theta_1 - \theta_2)} ~. \nonumber \]

    Solution

    Multiply the top and bottom of \(t_{1\;2\;p} \) by \(\;\sin\;\theta_1
    ~\sin\;\theta_2\; \) to get:

    \[\nonumber \begin{align*}
    t_{1\;2\;p} ~&=~ \frac{2\;n_1 ~\cos\;\theta_1}{n_2 ~\cos\;\theta_1 ~+~ n_1 ~\cos\;\theta_2}
    \;\cdot\; \frac{\sin\;\theta_1 ~ \sin\;\theta_2}{\sin\;\theta_1 ~
    \sin\;\theta_2}\\ \nonumber
    &=~ \frac{2\;(n_1 ~\sin\;\theta_1)~\cos\;\theta_1 ~\sin\;\theta_2}{
    (n_2 ~\sin\;\theta_2)~\sin\;\theta_1 ~\cos\;\theta_1 ~+~
    (n_1 ~\sin\;\theta_1)~\sin\;\theta_2 ~\cos\;\theta_2}\\ \nonumber
    &=~ \frac{2\;\cos\;\theta_1~\sin\;\theta_2}{
    \sin\;\theta_1 ~\cos\;\theta_1 ~+~ \sin\;\theta_2 ~\cos\;\theta_2}
    \qquad\text{(by Snell's law)}\\ \nonumber
    &=~ \frac{2\;\cos\;\theta_1~\sin\;\theta_2}{
    \tfrac{1}{2}\;(\sin\;2\,\theta_1 ~+~ \sin\;2\theta_2)}
    \qquad\text{(by the double-angle formula)}\\ \nonumber
    &=~ \frac{2\;\cos\;\theta_1~\sin\;\theta_2}{
    \tfrac{1}{2}\;(2\;\sin\;\tfrac{1}{2}(2\theta_1 + 2\theta_2)~
    \cos\;\tfrac{1}{2}(2\theta_1 - 2\theta_2))}
    \qquad\text{(by formula \ref{eqn:s2psinpsin})}\\ \nonumber
    &=~ \frac{2\;\cos\;\theta_1~\sin\;\theta_2}{\sin\;(\theta_1 + \theta_2)~
    \cos\;(\theta_1 - \theta_2)}
    \end{align*} \nonumber \]

    Example 3.22

    In an AC electrical circuit, the instantaneous power \(p(t) \) delivered to the entire circuit in the \emph{sinusoidal steady state} at time \(t \) is given by

    \[\nonumber p(t) ~=~ v(t)\;i(t) ~, \nonumber \]

    where the voltage \(v(t) \) and current \(i(t) \) are given by

    \[\nonumber \begin{align*}
    v(t) ~&=~ V_m \;\cos\;\omega t ~,\\ \nonumber
    i(t) ~&=~ I_m \;\cos\;(\omega t + \phi)~,
    \end{align*} \nonumber \]

    for some constants \(V_m \), \(I_m \), \(\omega \), and \(\phi \). Show that the instantaneous power can be written as

    \[\nonumber p(t) ~=~ \tfrac{1}{2}\,V_m \; I_m \;\cos\;\phi ~+~
    \tfrac{1}{2}\,V_m \; I_m \;\cos\;(2\omega t + \phi) ~. \nonumber \]

    Solution

    By definition of \(p(t) \), we have

    \[\nonumber \begin{alignat*}{2}
    p(t) ~&=~ V_m \;I_m \;\cos\;\omega t~\cos\;(\omega t + \phi)\\ \nonumber
    &=~ V_m \;I_m \;\cdot\;\tfrac{1}{2}(\cos\;(2\omega t + \phi) \;+\; \cos\;(-\phi))
    \qquad&&\text{(by Equation \ref{eqn:p2scoscos})}\\ \nonumber
    &=~ \tfrac{1}{2}\,V_m \; I_m \;\cos\;\phi ~+~
    \tfrac{1}{2}\,V_m \; I_m \;\cos\;(2\omega t + \phi)
    \qquad&&\text{(since \(\cos\;(-\phi) = \cos\;\phi\))}~.
    \end{alignat*} \nonumber \]


    This page titled 3.4: Other Identities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Michael Corral via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?