3.1: Functions given by formulas
- Page ID
- 48961
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Most of the time we will discuss functions that take some real numbers as inputs, and give real numbers as outputs. These functions are commonly described with a formula.
For the given function \(f\), calculate the outputs \(f(2)\), \(f(-3)\), and \(f(-1)\).
- \(f(x)=3x+4\)
- \(f(x)=\sqrt{x^2-3}\)
- \(f(x)=\left\{\begin{array}{cl}
5 x-6 & , \text { for } \quad-1 \leq x \leq 1 \\
x^{3}+2 x & , \text { for } \quad 1<x \leq 5
\end{array}\right. \) - \(f(x)=\dfrac{x+2}{x+3}\)
Solution
We substitute the input values into the function and simplify.
- \[\begin{aligned}
f(2) &=3 \cdot 2+4=6+4=10 \\
f(-3) &=3 \cdot(-3)+4=-9+4=-5 \\
f(-1) &=3 \cdot(-1)+4=-3+4=1
\end{aligned} \nonumber \] - Similarly, we calculate \[\begin{aligned}
f(2) &=\sqrt{2^{2}-3}=\sqrt{4-3}=\sqrt{1}=1 \\
f(-3) &=\sqrt{(-3)^{2}-3}=\sqrt{9-3}=\sqrt{6} \\
f(-1) &=\sqrt{(-1)^{2}-3}=\sqrt{1-3}=\sqrt{-2}=\text { undefined }
\end{aligned} \nonumber \] For the last step, we are assuming that we only deal with real numbers. Of course, as we will see later on, \(\sqrt{-2}\) can be defined as a complex number. But for now, we will only allow real solutions outputs. - The function \(f(x)=\left\{\begin{array}{cl}
5 x-6 & , \text { for } \quad-1 \leq x \leq 1 \\
x^{3}+2 x & , \text { for } \quad 1<x \leq 5
\end{array}\right. \) is given as a piecewise defined function. We have to substitute the values into the correct branch: \[\begin{aligned}
f(2) &=2^{3}+2 \cdot 2=8+4=12, \text { since } 1<2 \leq 5 \\
f(-3) &=\text { undefined, since }-3 \text { is not in any of the two branches } \\
f(-1) &=5 \cdot(-1)-7=-5-6=-11 \text{, since } -1 \leq-1 \leq 1
\end{aligned} \nonumber \] - Finally for \(f(x)=\dfrac{x+2}{x+3}\), we have: \[\begin{aligned}
f(2) &=\dfrac{2+2}{2+3}=\dfrac{4}{5} \\
f(-3) &=\dfrac{-3+2}{-3+3}=\dfrac{-1}{0}=\text { undefined } \\
f(-1) &=\dfrac{-1+2}{-1+3}=\dfrac{1}{2}
\end{aligned} \nonumber \]
Let \(f\) be the function given by \(f(x)=x^2+2x-3\). Find the following function values.
- \(f(5)\)
- \(f(2)\)
- \(f(-2)\)
- \(f(0)\)
- \(f(\sqrt{5})\)
- \(f(\sqrt{3}+1)\)
- \(f(a)\)
- \(f(a)+5\)
- \(f(x+h)\)
- \(f(x+h)-f(x)\)
- \(\dfrac {f(x+h)-f(x)}{h}\)
- \(\dfrac{f(x)-f(a)}{x-a}\)
Solution
The first four function values ((a)-(d)) can be calculated directly:
- \(f(5)=5^{2}+2 \cdot 5-3=25+10-3=32\)
- \(f(2)=2^{2}+2 \cdot 2-3=4+4-3=5\)
- \(f(-2)=(-2)^{2}+2 \cdot(-2)-3=4+-4-3=-3\)
- \(f(0)=0^{2}+2 \cdot 0-3=0+0-3=-3\)
The next two values ((e) and (f)) are similar, but the arithmetic is a bit more involved.
- \(f(\sqrt{5})=\sqrt{5}^{2}+2 \cdot \sqrt{5}-3=5+2 \cdot \sqrt{5}-3=2+2 \cdot \sqrt{5}\)
- \(\begin{aligned}
f(\sqrt{3}+1) &=(\sqrt{3}+1)^{2}+2 \cdot(\sqrt{3}+1)-3 \\
&=(\sqrt{3}+1) \cdot(\sqrt{3}+1)+2 \cdot(\sqrt{3}+1)-3 \\
&=\sqrt{3} \cdot \sqrt{3}+2 \cdot \sqrt{3}+1 \cdot 1+2 \cdot \sqrt{3}+2-3 \\
&=3+2 \cdot \sqrt{3}+1+2 \cdot \sqrt{3}+2-3 \\
&=3+4 \cdot \sqrt{3}
\end{aligned}\)
The last five values ((g)-(l)) are purely algebraic.
- \(f(a)=a^{2}+2 \cdot a-3\)
- \(f(a)+5=a^{2}+2 \cdot a-3+5=a^{2}+2 \cdot a+2\)
- \(\begin{aligned}
f(x+h) &=(x+h)^{2}+2 \cdot(x+h)-3 \\
&=x^{2}+2 x h+h^{2}+2 x+2 h-3
\end{aligned}\)
- \(\begin{aligned}
f(x+h)-f(x) &=\left(x^{2}+2 x h+h^{2}+2 x+2 h-3\right)-\left(x^{2}+2 x-3\right) \\
&=x^{2}+2 x h+h^{2}+2 x+2 h-3-x^{2}-2 x+3 \\
&=2 x h+h^{2}+2 h
\end{aligned}\)
- \(\begin{aligned}
\dfrac{f(x+h)-f(x)}{h} &=\dfrac{2 x h+h^{2}+2 h}{h} \\
&=\dfrac{h \cdot(2 x+h+2)}{h}\\
&=2 x+h+2
\end{aligned}\)
- \(\begin{aligned}
\dfrac{f(x)-f(a)}{x-a} &=\dfrac{\left(x^{2}+2 x-3\right)-\left(a^{2}+2 a-3\right)}{x-a} \\
&=\dfrac{x^{2}+2 x-3-a^{2}-2 a+3}{x-a}=\dfrac{x^{2}-a^{2}+2 x-2 a}{x-a} \\
&= \dfrac{(x+a)(x-a)+2(x-a)}{x-a}=\dfrac{(x-a)(x+a+2)}{(x-a)}=x+a+2
\end{aligned}\)
The quotients \(\dfrac{f(x+h)-f(x)} h\) and \(\dfrac{f(x)-f(a)}{x-a}\) as in the last two examples Example \(\PageIndex{2}\) (k) and (l) will become particularly important in calculus. They are called difference quotients. We now calculate some more examples of difference quotients.
Calculate the difference quotient \(\dfrac{f(x+h)-f(x)}h\) for
- \(f(x)=x^3+2\)
- \(f(x)=\dfrac 1 x\)
Solution
We calculate first the difference quotient step by step.
- \[\begin{aligned} f(x+h)&=(x+h)^3+2 =(x+h)\cdot (x+h)\cdot (x+h)+2\\ & = (x^2+2xh+h^2)\cdot (x+h)+2\\ & = x^3+2x^2h+xh^2+x^2h+2xh^2+h^3+2\\ & = x^3+3x^2h+3xh^2+h^3+2\end{aligned} \nonumber \]
Subtracting \(f(x)\) from \(f(x+h)\) gives
\[\begin{aligned} f(x+h)-f(x)&= (x^3+3x^2h+3xh^2+h^3+2)-(x^3+2)\\ &=x^3+3x^2h+3xh^2+h^3+2-x^3-2\\ &=3x^2h+3xh^2+h^3\end{aligned} \nonumber \]
With this we obtain:
\[\begin{aligned} \dfrac{f(x+h)-f(x)}{h}&=\dfrac{3x^2h+3xh^2+h^3} h\\ &= \dfrac{h\cdot (3x^2+3xh+h^2)} h=3x^2+3xh+h^2\end{aligned} \nonumber \]
We handle part (b) similarly.
- \[f(x+h)=\dfrac{1}{x+h} \nonumber \]
so that
\[f(x+h)-f(x)= \dfrac 1 {x+h} - \dfrac 1 x \nonumber \]
We obtain the solution after simplifying the double fraction:
\[\begin{aligned} \dfrac{f(x+h)-f(x)} h&= \dfrac{\frac{1}{x+h}-\frac{1}{x}}{h}=\dfrac{\frac{x-(x+h)}{(x+h)\cdot x}}{h}=\dfrac{\frac{x-x-h}{(x+h)\cdot x}}{h}=\dfrac{\frac{-h}{(x+h)\cdot x}}{h}\\ &= \dfrac{-h}{(x+h)\cdot x}\cdot \dfrac 1 h = \dfrac{-1}{(x+h)\cdot x}\end{aligned} \nonumber\]
So far, we have not mentioned the domain and range of the functions defined above. Indeed, we will often not describe the domain explicitly but use the following convention.
Unless otherwise stated, a function \(f\) has the largest possible domain, that is the domain is the set of all real numbers \(x\) for which \(f(x)\) is a well-defined real number. We refer to this as the standard convention of the domain. (In particular, under this convention, any polynomial has the domain \(\mathbb{R}\) of all real numbers.)
The range is the set of all outputs obtained by \(f\) from the inputs (see also the warning.)
Find the domain of each of the following functions.
- \(f(x)=4x^3-2x+5\)
- \(f(x)=|x|\)
- \(f(x)=\sqrt{x}\)
- \(f(x)=\sqrt{x-3}\)
- \(f(x)=\dfrac 1 x\)
- \(f(x)=\dfrac{x-2}{x^2+8x+15}\)
- \(f(x)=\left\{\begin{array}{cl}
x+1 & , \text { for } 2<x \leq 4 \\
2 x-1 & \text {, for } 5 \leq x
\end{array}\right. \)
Solution
- There is no problem taking a real number \(x\) to any (positive) power. Therefore, \(f\) is defined for all real numbers \(x\), and the domain is written as \(D=\mathbb{R}\).
- Again, we can take the absolute value for any real number \(x\). The domain is all real numbers, \(D=\mathbb{R}\).
- The square root \(\sqrt{x}\) is only defined for \(x\geq 0\) (remember we are not using complex numbers yet!). Thus, the domain is \(D=[0,\infty)\).
- Again, the square root is only defined for non-negative numbers. Thus, the argument in the square root has to be greater or equal to zero: \(x-3\geq 0\). Solving this for \(x\) gives
\[x-3\geq 0 \quad\quad \stackrel {\text{(add $3$)}}\implies \quad\quad x\geq 3 \nonumber \]
The domain is therefore, \(D=[3,\infty)\).
- A fraction is defined whenever the denominator is not zero, so that in this case \(\dfrac 1 x\) is defined whenever \(x\neq 0\). Therefore the domain is all real numbers except zero, \(D=\mathbb{R}-\{0\}\).
- Again, we need to make sure that the denominator does not become zero; however we do not care about the numerator. The denominator is zero exactly when \(x^2+8x+15=0\). Solving this for \(x\) gives:
\[\begin{aligned} x^2+8x+15=0 & \implies & (x+3)\cdot(x+5)=0 \\ & \implies & x+3=0 \text{ or } x+5=0 \\ & \implies & x=-3 \text{ or } x=-5.\end{aligned} \nonumber \]
The domain is all real numbers except for \(-3\) and \(-5\), that is \(D=\mathbb{R}-\{-5,-3\}\).
- The function is explicitly defined for all \(2<x\leq 4\) and \(5\leq x\). Therefore, the domain is \(D=(2,4]\cup [5,\infty)\).