Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

6.3: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 6.3.1

Find f+g, fg, fg for the functions below. State their domain.

  1. f(x)=x2+6x, and g(x)=3x5
  2. f(x)=x3+5, and g(x)=5x2+7
  3. f(x)=3x+7x, and g(x)=2x2+5x
  4. f(x)=1x+2, and g(x)=5xx+2
  5. f(x)=x3, and g(x)=2x3
  6. f(x)=x2+2x+5, and g(x)=3x6
  7. f(x)=x2+3x, and g(x)=2x2+3x+4
Answer
  1. (f+g)(x)=x2+9x5 with domain Df+g=R,(fg)(x)=x2+3x+5 with domain Dfg=R,(fg)(x)=3x3+13x230x with domain Dfg=R
  2. (f+g)(x)=x3+5x2+12,Df+g=R,(fg)(x)=x35x22,Dfg=R,(fg)(x)=5x5+7x3+25x2+35,Dfg=R
  3. (f+g)(x)=2x2+3x+12x,Df+g=[0,),(fg)(x)=2x2+3x+2x,Dfg=[0,),(fg)(x)=6x3+14x2x+15xx+35x,Dfg=[0,)
  4. (f+g)(x)=5x+1x+2,Df+g=R{2},(fg)(x)=15xx+2,Dfg=R{2},(fg)(x)=5x(x+2)2,Dfg=R{2}
  5. (f+g)(x)=3x3,Df+g=[3,),(fg)(x)=x3,Dfg=[3,),(fg)(x)=2(x3)2=2(x3),Dfg=[3,)
  6. (f+g)(x)=x2+5x1,Df+g=R,(fg)(x)=x2x+11,Dfg=R,(fg)(x)=3x3+3x30,Dfg=R
  7. (f+g)(x)=3x2+6x+4,Df+g=R,(fg)(x)=x24,Dfg=R,(fg)(x)=2x4+9x3+13x2+12x,Dfg=R

Exercise 6.3.2

Find fg, and gf for the functions below. State their domain.

  1. f(x)=3x+6, and g(x)=2x8
  2. f(x)=x+2, and g(x)=x25x+4
  3. f(x)=1x5, and g(x)=x2x+3
  4. f(x)=x+6, and g(x)=2x+5
  5. f(x)=x2+8x33, and g(x)=x
Answer
  1. (fg)(x)=3x+62x8 with domain Dfg=R{4}, (gf)(x)=2x83x+6 with domain Dgf=R{2}
  2. (fg)(x)=x+2x25x+4=x+2(x4)(x1), Dfg=R{1,4},(gf)(x)=x25x+4x+2,Dgf=R{2}
  3. (fg)(x)=x+3(x5)(x2),Dfg=R{3,2,5},(gf)(x)=(x5)(x2)x+3,Dgf=R{3,5}
  4. (fg)(x)=x+62x+5,Dfg=[6,52)(52,),(gf)(x)=2x+5x+6,Dgf=(6,)
  5. (fg)(x)=x2+8x33x,Dfg=(0,),(gf)(x)=xx2+8x33,Dgf=[0,3)(3,)

Exercise 6.3.3

Let f(x)=2x3 and g(x)=3x2+4x. Find the following compositions

  1. f(g(2))
  2. g(f(2))
  3. f(f(5))
  4. f(5g(3))
  5. g(f(2)2)
  6. f(f(3)+g(3))
  7. g(f(2+x))
  8. f(f(x))
  9. f(f(3)3g(2))
  10. f(f(f(2)))
  11. f(x+h)
  12. g(x+h)
Answer
  1. 37
  2. 7
  3. 11
  4. 147
  5. 1
  6. 81
  7. 12x2+20x+7
  8. 4x9
  9. 141
  10. 5
  11. 2x+2h3
  12. 3x2+6xh+3h2+4x+4h

Exercise 6.3.4

Find the composition (fg)(x) for the functions:

  1. f(x)=3x5, and g(x)=2x+3
  2. f(x)=x2+2, and g(x)=x+3
  3. f(x)=x23x+2, and g(x)=2x+1
  4. f(x)=x2+x+3, and g(x)=x2+2x
  5. f(x)=2x+4, and g(x)=x+h
  6. f(x)=x2+4x+3, and g(x)=x+h
Answer
  1. (fg)(x)=6x+4
  2. (fg)(x)=x2+6x+11
  3. (fg)(x)=4x22x
  4. (fg)(x)=x4+4x3+4x2+x2+2x+3
  5. (fg)(x)=2x+h+4
  6. (fg)(x)=x2+2xh+h2+4x+4h+3

Exercise 6.3.5

Find the compositions

(fg)(x),(gf)(x),(ff)(x),(gg)(x)

for the following functions:

  1. f(x)=2x+4, and g(x)=x5
  2. f(x)=x+3, and g(x)=x22x
  3. f(x)=2x2x6, and g(x)=3x+2
  4. f(x)=1x+3, and g(x)=1x3
  5. f(x)=(2x7)2, and g(x)=x+72
Answer
  1. (fg)(x)=2x6,(gf)(x)=2x1,(ff)(x)=4x+12,(gg)(x)=x10
  2. (fg)(x)=x22x+3,(gf)(x)=x2+4x+3,(ff)(x)=x+6,(gg)(x)=x44x3+2x2+4x
  3. (fg)(x)=6x23x+2,(gf)(x)=6x23x16,(ff)(x)=8x48x348x2+25x+72,(gg)(x)=33x+2+2
  4. (fg)(x)=x,(gf)(x)=x,(ff)(x)=x+33x+10,(gg)(x)=10x313x
  5. (fg)(x)=x,(gf)(x)=x,(ff)(x)=(2(2x7)27)2 or expanded in descending degrees: (ff)(x)=64x4896x3+4592x210192x+8281,(gg)(x)=x+72+72=14+14+2x4

Exercise 6.3.6

Let f and g be the functions defined by the following table. Complete the table given below.

x1234567f(x)4570264g(x)68529112f(x)+34g(x)+5g(x)2f(x)f(x+3)

Answer

x1234567f(x)4570264g(x)68529112f(x)+3781031974g(x)+529282513414913g(x)2f(x)218921316f(x+3)0264 undef.  undef.  undef. 

Note, however, that the complete table for y=f(x+3) is given by:

x2101234f(x+3)4570264

Exercise 6.3.7

Let f and g be the functions defined by the following table. Complete the table by composing the given functions.

x123456f(x)312563g(x)526124(gf)(x)(fg)(x)(ff)(x)(gg)(x)

Answer

x123456f(x)312563g(x)526124(gf)(x)652246(fg)(x)613315(ff)(x)231632(gg)(x)224521

Exercise 6.3.8

Let f and g be the functions defined by the following table. Complete the table by composing the given functions.

x024681012f(x)485612110g(x)10206728(gf)(x)(fg)(x)(ff)(x)(gg)(x)

Answer

x024681012f(x)485612110g(x)10206728(gf)(x)07 undef. 68 undef. 2(fg)(x)184 undef.  undef. 812(ff)(x)512 undef. 610 undef. 1(gg)(x)2210 undef.  undef. 27


This page titled 6.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?