6.3: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Find f+g, f−g, f⋅g for the functions below. State their domain.
- f(x)=x2+6x, and g(x)=3x−5
- f(x)=x3+5, and g(x)=5x2+7
- f(x)=3x+7√x, and g(x)=2x2+5√x
- f(x)=1x+2, and g(x)=5xx+2
- f(x)=√x−3, and g(x)=2√x−3
- f(x)=x2+2x+5, and g(x)=3x−6
- f(x)=x2+3x, and g(x)=2x2+3x+4
- Answer
-
- (f+g)(x)=x2+9x−5 with domain Df+g=R,(f−g)(x)=x2+3x+5 with domain Df−g=R,(f⋅g)(x)=3x3+13x2−30x with domain Df⋅g=R
- (f+g)(x)=x3+5x2+12,Df+g=R,(f−g)(x)=x3−5x2−2,Df−g=R,(f⋅g)(x)=5x5+7x3+25x2+35,Df⋅g=R
- (f+g)(x)=2x2+3x+12√x,Df+g=[0,∞),(f−g)(x)=−2x2+3x+2√x,Df−g=[0,∞),(f⋅g)(x)=6x3+14x2√x+15x√x+35x,Df⋅g=[0,∞)
- (f+g)(x)=5x+1x+2,Df+g=R−{−2},(f−g)(x)=1−5xx+2,Df−g=R−{−2},(f⋅g)(x)=5x(x+2)2,Df⋅g=R−{−2}
- (f+g)(x)=3√x−3,Df+g=[3,∞),(f−g)(x)=−√x−3,Df−g=[3,∞),(f⋅g)(x)=2⋅(√x−3)2=2⋅(x−3),Df⋅g=[3,∞)
- (f+g)(x)=x2+5x−1,Df+g=R,(f−g)(x)=x2−x+11,Df−g=R,(f⋅g)(x)=3x3+3x−30,Df⋅g=R
- (f+g)(x)=3x2+6x+4,Df+g=R,(f−g)(x)=−x2−4,Df−g=R,(f⋅g)(x)=2x4+9x3+13x2+12x,Df⋅g=R
Find fg, and gf for the functions below. State their domain.
- f(x)=3x+6, and g(x)=2x−8
- f(x)=x+2, and g(x)=x2−5x+4
- f(x)=1x−5, and g(x)=x−2x+3
- f(x)=√x+6, and g(x)=2x+5
- f(x)=x2+8x−33, and g(x)=√x
- Answer
-
- (fg)(x)=3x+62x−8 with domain Dfg=R−{4}, (gf)(x)=2x−83x+6 with domain Dgf=R−{−2}
- (fg)(x)=x+2x2−5x+4=x+2(x−4)(x−1), Dfg=R−{1,4},(gf)(x)=x2−5x+4x+2,Dgf=R−{−2}
- (fg)(x)=x+3(x−5)(x−2),Dfg=R−{−3,2,5},(gf)(x)=(x−5)(x−2)x+3,Dgf=R−{−3,5}
- (fg)(x)=√x+62x+5,Dfg=[−6,−52)∪(−52,∞),(gf)(x)=2x+5√x+6,Dgf=(−6,∞)
- (fg)(x)=x2+8x−33√x,Dfg=(0,∞),(gf)(x)=√xx2+8x−33,Dgf=[0,3)∪(3,∞)
Let f(x)=2x−3 and g(x)=3x2+4x. Find the following compositions
- f(g(2))
- g(f(2))
- f(f(5))
- f(5g(−3))
- g(f(2)−2)
- f(f(3)+g(3))
- g(f(2+x))
- f(f(−x))
- f(f(−3)−3g(2))
- f(f(f(2)))
- f(x+h)
- g(x+h)
- Answer
-
- 37
- 7
- 11
- 147
- −1
- 81
- 12x2+20x+7
- −4x−9
- −141
- −5
- 2x+2h−3
- 3x2+6xh+3h2+4x+4h
Find the composition (f∘g)(x) for the functions:
- f(x)=3x−5, and g(x)=2x+3
- f(x)=x2+2, and g(x)=x+3
- f(x)=x2−3x+2, and g(x)=2x+1
- f(x)=x2+√x+3, and g(x)=x2+2x
- f(x)=2x+4, and g(x)=x+h
- f(x)=x2+4x+3, and g(x)=x+h
- Answer
-
- (f∘g)(x)=6x+4
- (f∘g)(x)=x2+6x+11
- (f∘g)(x)=4x2−2x
- (f∘g)(x)=x4+4x3+4x2+√x2+2x+3
- (f∘g)(x)=2x+h+4
- (f∘g)(x)=x2+2xh+h2+4x+4h+3
Find the compositions
(f∘g)(x),(g∘f)(x),(f∘f)(x),(g∘g)(x)
for the following functions:
- f(x)=2x+4, and g(x)=x−5
- f(x)=x+3, and g(x)=x2−2x
- f(x)=2x2−x−6, and g(x)=√3x+2
- f(x)=1x+3, and g(x)=1x−3
- f(x)=(2x−7)2, and g(x)=√x+72
- Answer
-
- (f∘g)(x)=2x−6,(g∘f)(x)=2x−1,(f∘f)(x)=4x+12,(g∘g)(x)=x−10
- (f∘g)(x)=x2−2x+3,(g∘f)(x)=x2+4x+3,(f∘f)(x)=x+6,(g∘g)(x)=x4−4x3+2x2+4x
- (f∘g)(x)=6x−2−√3x+2,(g∘f)(x)=√6x2−3x−16,(f∘f)(x)=8x4−8x3−48x2+25x+72,(g∘g)(x)=√3√3x+2+2
- (f∘g)(x)=x,(g∘f)(x)=x,(f∘f)(x)=x+33x+10,(g∘g)(x)=10x−31−3x
- (f∘g)(x)=x,(g∘f)(x)=x,(f∘f)(x)=(2(2x−7)2−7)2 or expanded in descending degrees: (f∘f)(x)=64x4−896x3+4592x2−10192x+8281,(g∘g)(x)=√√x+72+72=14+√14+2√x4
Let f and g be the functions defined by the following table. Complete the table given below.
x1234567f(x)4570−264g(x)6−8529112f(x)+34g(x)+5g(x)−2f(x)f(x+3)
- Answer
-
x1234567f(x)4570−264g(x)6−8529112f(x)+3781031974g(x)+529−282513414913g(x)−2f(x)−2−18−9213−1−6f(x+3)0−264 undef. undef. undef.
Note, however, that the complete table for y=f(x+3) is given by:
x−2−101234f(x+3)4570−264
Let f and g be the functions defined by the following table. Complete the table by composing the given functions.
x123456f(x)312563g(x)526124(g∘f)(x)(f∘g)(x)(f∘f)(x)(g∘g)(x)
- Answer
-
x123456f(x)312563g(x)526124(g∘f)(x)652246(f∘g)(x)613315(f∘f)(x)231632(g∘g)(x)224521
Let f and g be the functions defined by the following table. Complete the table by composing the given functions.
x024681012f(x)485612−110g(x)1020−6728(g∘f)(x)(f∘g)(x)(f∘f)(x)(g∘g)(x)
- Answer
-
x024681012f(x)485612−110g(x)1020−6728(g∘f)(x)07 undef. −68 undef. 2(f∘g)(x)−184 undef. undef. 812(f∘f)(x)512 undef. 610 undef. −1(g∘g)(x)2210 undef. undef. 27