Skip to main content
Mathematics LibreTexts

14.3: Exercises

  • Page ID
    49040
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    Combine the terms and write your answer as one logarithm.

    1. \(3\ln(x)+\ln(y)\)
    2. \(\log(x)-\dfrac 2 3\log(y)\)
    3. \(\dfrac{1}{3}\log(x)-\log(y)+4\log(z)\)
    4. \(\log(xy^2z^3)-\log(x^4y^3z^2)\)
    5. \(\dfrac 1 4\ln(x)-\dfrac{1}{2}\ln(y)+\dfrac{2}{3}\ln(z)\)
    6. \(-\ln(x^2-1)+\ln(x-1)\)
    7. \(5\ln(x)+2\ln(x^4)-3\ln(x)\) & h) \(\log_5(a^2+10a+9)-\log_5(a+9)+2\)
    Answer
    1. \(\ln \left(x^{3} \cdot y\right)\)
    2. \(\log \left(\dfrac{x}{y^{\frac{2}{3}}}\right)=\log \left(\dfrac{x}{\sqrt[3]{y^{2}}}\right)\)
    3. \(\log \left(\dfrac{\sqrt[3]{x} z^{4}}{y}\right)\)
    4. \(\log \left(\dfrac{z}{x^{3} y}\right)\)
    5. \(\ln \left(\dfrac{\sqrt[4]{x} \sqrt[3]{z^{2}}}{\sqrt{y}}\right)\)
    6. \(\ln \left(\dfrac{1}{x+1}\right)\)
    7. \(\ln \left(x^{10}\right)\)
    8. \(\log _{5}(25 \cdot(a+1))\)

    Exercise \(\PageIndex{2}\)

    Write the expressions in terms of elementary logarithms \(u=\log_b(x)\), \(v=\log_b(y)\), and \(w=\log_b(z)\) (whichever are applicable). Assume that \(x,y,z>0\).

    1. \(\log(x^3\cdot y)\)
    2. \(\log(\sqrt[3]{x^2}\cdot \sqrt[4]{y^7})\)
    3. \(\log\left(\sqrt{x\cdot \sqrt[3]{y}}\right)\)
    4. \(\ln\left(\dfrac{x^3} {y^4}\right)\)
    5. \(\ln\left(\dfrac{x^2} {\sqrt{y}\cdot z^2}\right)\)
    6. \(\log_3\left(\sqrt{\dfrac{x\cdot y^3} {\sqrt{z}}}\,\right)\)
    7. \(\log_2\left(\dfrac{\sqrt[4]{x^3\cdot z}} {y^3}\right)\)
    8. \(\log\left(\dfrac{100 \sqrt[5]{z}}{y^2}\right)\)
    9. \(\ln \left(\sqrt[3]{\dfrac{\sqrt{y}\cdot z^4}{e^2}}\right)\)
    Answer
    1. \(3 u+v\)
    2. \(\dfrac{2}{3} u+\dfrac{7}{4} v\)
    3. \(\dfrac{1}{2} u+\dfrac{1}{6} v\)
    4. \(3 u-4 v\)
    5. \(2 u-\dfrac{1}{2} v-2 w\)
    6. \(\dfrac{1}{2} u+\dfrac{3}{2} v-\dfrac{1}{4} w\)
    7. \(\dfrac{3}{4} u-3 v+\dfrac{1}{4} w\)
    8. \(2-2 v+\dfrac{1}{5} w\)
    9. \(\dfrac{1}{6} v+\dfrac{4}{3} w-\dfrac{2}{3}\)

    Exercise \(\PageIndex{3}\)

    Solve for \(x\) without using a calculator.

    1. \(6^{x-2}=36\)
    2. \(2^{3x-8}=16\)
    3. \(10^{5-x}=0.0001\) & d)
    4. \(5^{5x+7}=\dfrac{1}{125}\)
    5. \(2^x=64^{x+1}\)
    6. \(4^{x+3}=32^{x}\)
    7. \(13^{4+2x}=1\)
    8. \(3^{x+2}=27^{x-3}\)
    9. \(25^{7x-4}=5^{2-3x}\)
    10. \(9^{5+3x}=27^{8-2x}\)
    Answer
    1. \(x = 4\)
    2. \(x = 4\)
    3. \(x = 9\)
    4. \(x = −2\)
    5. \(x = −\dfrac 6 5\)
    6. \(x = 2\)
    7. \(x = −2\)
    8. \(x = \dfrac {11}{2}\)
    9. \(x =\dfrac {10}{17}\)
    10. \(x = \dfrac 7 6\)

    Exercise \(\PageIndex{4}\)

    Solve for \(x\) without using a calculator.

    1. \(\ln(2x+4)=\ln(5x-5)\) & b)
    2. \(\ln(x+6)=\ln(x-2)+\ln(3)\)
    3. \(\log_2(x+5)=\log_2(x)+5\)
    4. \(\log(x)+1=\log(5x+380)\)
    5. \(\log(x+5)+\log(x)=\log(6)\)
    6. \(\log_2(x)+\log_2(x-6)=4\)
    7. \(\log_6(x)+\log_6(x-16)=2\)
    8. \(\log_5(x-24)+\log_5(x)=2\)
    9. \(\log_4(x)+\log_4(x+6)=2\)
    10. \(\log_2(x+3)+\log_2(x+5)=3\)
    Answer
    1. \(x = 3\)
    2. \(x = 6\)
    3. \(x = \dfrac{5}{31}\)
    4. \(x = 76\)
    5. \(x = 1\)
    6. \(x = 8\)
    7. \(x = 18\)
    8. \(x = 25\)
    9. \(x = 2\)
    10. \(x = −1\)

    Exercise \(\PageIndex{5}\)

    Solve for \(x\). First find the exact answer as an expression involving logarithms. Then approximate the answer to the nearest hundredth using the calculator.

    1. \(4^{x}=57\)
    2. \(9^{x-2}=7\)
    3. \(2^{x+1}=31\)
    4. \(3.8^{2x+7}=63\)
    5. \(5^{x+5}=8^x\)
    6. \(3^{x+2}=0.4^x\)
    7. \(1.02^{2x-9}=4.35^{x}\)
    8. \(4^{x+1}=5^{x+2}\)
    9. \(9^{3-x}=4^{x-6}\)
    10. \(2.4^{7-2x}=3.8^{3x+4}\)
    11. \(4^{9x-2}=9^{2x-4}\)
    12. \(1.95^{-3x-4}=1.2^{4-7x}\)
    Answer
    1. \(x=\dfrac{\log 57}{\log 4} \approx 2.92\)
    2. \(x=\dfrac{\log 7}{\log 9}+2 \approx 2.89\)
    3. \(x=\dfrac{\log 31}{\log 2}-1 \approx 3.94\)
    4. \(x=\dfrac{\log (63)-7 \log (3.8)}{2 \log (3.8)} \approx-1.95\)
    5. \(x=\dfrac{5 \cdot \log (5)}{\log (8)-\log (5)} \approx 17.12\)
    6. \(x=\dfrac{2 \cdot \log (3)}{\log (0.4)-\log (3)} \approx-1.09\)
    7. \(x=\dfrac{9 \log (1.02)}{2 \log (1.02)-\log (4.35)} \approx-0.12\)
    8. \(x=\dfrac{\log (4)-2 \log (5)}{\log (5)-\log (4)} \approx-8.21\)
    9. \(x=\dfrac{3 \log (9)+6 \log (4)}{\log (9)+\log (4)} \approx 4.16\)
    10. \(x=\dfrac{7 \log (2.4)-4 \log (3.8)}{2 \log (2.4)+3 \log (3.8)} \approx 0.14\)
    11. \(x=\dfrac{4 \log (9)-2 \log (4)}{2 \log (9)-9 \log (4)} \approx-0.74\)
    12. \(\dfrac{4 \log (1.2)+4 \log (1.95)}{7 \log (1.2)-3 \log (1.95)} \approx-4.68\)

    This page titled 14.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.