14.3: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Combine the terms and write your answer as one logarithm.
- 3ln(x)+ln(y)
- log(x)−23log(y)
- 13log(x)−log(y)+4log(z)
- log(xy2z3)−log(x4y3z2)
- 14ln(x)−12ln(y)+23ln(z)
- −ln(x2−1)+ln(x−1)
- 5ln(x)+2ln(x4)−3ln(x) & h) log5(a2+10a+9)−log5(a+9)+2
- Answer
-
- ln(x3⋅y)
- log(xy23)=log(x3√y2)
- log(3√xz4y)
- log(zx3y)
- ln(4√x3√z2√y)
- ln(1x+1)
- ln(x10)
- log5(25⋅(a+1))
Write the expressions in terms of elementary logarithms u=logb(x), v=logb(y), and w=logb(z) (whichever are applicable). Assume that x,y,z>0.
- log(x3⋅y)
- log(3√x2⋅4√y7)
- log(√x⋅3√y)
- ln(x3y4)
- ln(x2√y⋅z2)
- log3(√x⋅y3√z)
- log2(4√x3⋅zy3)
- log(1005√zy2)
- ln(3√√y⋅z4e2)
- Answer
-
- 3u+v
- 23u+74v
- 12u+16v
- 3u−4v
- 2u−12v−2w
- 12u+32v−14w
- 34u−3v+14w
- 2−2v+15w
- 16v+43w−23
Solve for x without using a calculator.
- 6x−2=36
- 23x−8=16
- 105−x=0.0001 & d)
- 55x+7=1125
- 2x=64x+1
- 4x+3=32x
- 134+2x=1
- 3x+2=27x−3
- 257x−4=52−3x
- 95+3x=278−2x
- Answer
-
- x=4
- x=4
- x=9
- x=−2
- x=−65
- x=2
- x=−2
- x=112
- x=1017
- x=76
Solve for x without using a calculator.
- ln(2x+4)=ln(5x−5) & b)
- ln(x+6)=ln(x−2)+ln(3)
- log2(x+5)=log2(x)+5
- log(x)+1=log(5x+380)
- log(x+5)+log(x)=log(6)
- log2(x)+log2(x−6)=4
- log6(x)+log6(x−16)=2
- log5(x−24)+log5(x)=2
- log4(x)+log4(x+6)=2
- log2(x+3)+log2(x+5)=3
- Answer
-
- x=3
- x=6
- x=531
- x=76
- x=1
- x=8
- x=18
- x=25
- x=2
- x=−1
Solve for x. First find the exact answer as an expression involving logarithms. Then approximate the answer to the nearest hundredth using the calculator.
- 4x=57
- 9x−2=7
- 2x+1=31
- 3.82x+7=63
- 5x+5=8x
- 3x+2=0.4x
- 1.022x−9=4.35x
- 4x+1=5x+2
- 93−x=4x−6
- 2.47−2x=3.83x+4
- 49x−2=92x−4
- 1.95−3x−4=1.24−7x
- Answer
-
- x=log57log4≈2.92
- x=log7log9+2≈2.89
- x=log31log2−1≈3.94
- x=log(63)−7log(3.8)2log(3.8)≈−1.95
- x=5⋅log(5)log(8)−log(5)≈17.12
- x=2⋅log(3)log(0.4)−log(3)≈−1.09
- x=9log(1.02)2log(1.02)−log(4.35)≈−0.12
- x=log(4)−2log(5)log(5)−log(4)≈−8.21
- x=3log(9)+6log(4)log(9)+log(4)≈4.16
- x=7log(2.4)−4log(3.8)2log(2.4)+3log(3.8)≈0.14
- x=4log(9)−2log(4)2log(9)−9log(4)≈−0.74
- 4log(1.2)+4log(1.95)7log(1.2)−3log(1.95)≈−4.68