Skip to main content
Mathematics LibreTexts

26.6: A.6- Solving an equation using the solver

  • Page ID
    54493
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    We now solve the equation \(x^2=2\). The first thing we must do in order to use the equation solver is to rewrite the equation as an expression equal to zero, that is we need to write it in the format ‘something\(=0\).’ In our example this will be \(x^2-2=0\). Now, let’s go to the equation solver. Press \(\boxed{\text{math}}\) and use the cursor to go to the bottom of the list and press enter when ’Solver...’ is highlighted. Various things appear on the screen. Press the up arrow \(\boxed{\triangle}\) until ’EQUATION SOLVER’ appears on the top line. Edit the right hand side of the equation on the second line so that it reads ’\(0=x^2-2\)’ and press \(\boxed{\text{enter}}\).

    clipboard_eddbc36c06dde2a8b0d5f3e0dcec5298a.png

    Next, on the second line pick a number near where you expect the answer to be, for example, ’\(x=1\)’.

    clipboard_e45a5bf69076b2bd5f81061a8bf5951d8.png

    Now solve by pressing\(\boxed{\text{alpha}}\)\(\boxed{\text{enter}}\). The second line gives an answer (check that it is a square root of two!).

    clipboard_e5fdcd659a5657fd562075452383ee732.png

    What happens if you had entered ‘\(x=-1\)’ on the second line (use \(\boxed{\text{(-)}}\)  here)?


    This page titled 26.6: A.6- Solving an equation using the solver is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.