# 7.3: Variable Rescaling of Continuous-Time Models

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Variable rescaling of continuous-time models has one distinct difference from variable rescaling that of discrete-time models. That is, you get one more variable you can rescale: time. This may allow you to eliminate one more parameters from your model compared to discrete-time cases.

Here is an example: the logistic growth model. Remember that its discrete-time version

$x_{t}=x_{t-1} +rx_{t-1}(1-\frac{x_{t-1}}{K})\label{(7.26)}$

was simplified to the following form:

$x'_{t} =r'x'_{t-1}(1-x'_{t-1}) \label{(7.27)}$

There was still one parameter $$(r')$$ remaining in the model even after rescaling. In contrast, consider a continuous-time version of the same logistic growth model:

$\frac{dx}{dt} =rx(1-\frac{x}{K}) \label{(7.28)}$

Here we can apply the following two rescaling rules to both state variable $$x$$ and time $$t$$:

$x \rightarrow ax' \label{(7.29}$

$t\ \rightarrow \beta {t'}\label{(7.30)}$

With these replacements, Equation \ref{(7.28)} is simplified as

$\frac{d(ax')}{d(\beta {t'})} =rax'(1-\frac{ax'}{K}) \label{(7.31)}$

$\frac{\beta}{\alpha} \cdot \frac{d(ax')}{d(\beta{t'})} = \frac{\beta}{\alpha} \cdot r\alpha{x'} (1-\frac{\alpha{x'}}{K}) \label{(7.32)}$

$\frac{dx'}{dt'} = r\beta{x'}(1-\frac{\alpha{x'}}{K}) \label{(7.33)}$

$\frac{dx'}{dt'} =x'(1-x')\label{(7.34)}$

with $$α = K$$ and $$β = 1/r$$. Note that the final result doesn’t contain any parameter left! This means that, unlike its discrete-time counterpart, a continuous-time logistic growth model doesn’t change its essential behavior when the model parameters $$(r, K)$$ are varied. They only change the scaling of trajectories along the $$t$$ or $$x$$ axis.

##### Exercise $$\PageIndex{1}$$

Simplify the following differential equation by variable rescaling:

$\frac{dx}{dt} =ax^{2} +bx+c \label{(7.35)}$

##### Exercise $$\PageIndex{2}$$

Simplify the following differential equation by variable rescaling:

$\frac{dx}{dt}=\frac{a}{x+b} \label{(7.36)}$

$a >0, b >0 \label{(7.37)}$

##### Exercise $$\PageIndex{3}$$

Simplify the following two-dimensional differential equation model by variable rescaling:

$\frac{dx}{dt} =ax(1-x)-bxy \label{(7.38)}$

$\frac{dy}{dt} =cy(1-y)-dxy \label{(7.39)}$

This page titled 7.3: Variable Rescaling of Continuous-Time Models is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Hiroki Sayama (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.