# 7.4: Asymptotic Behavior of Continuous-Time Linear Dynamical Systems

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

A general formula for continuous-time linear dynamical systems is given by

$\frac{dx}{dt} =Ax, \label{(7.40)}$

where $$x$$ is the state vector of the system and $$A$$ is the coefficient matrix. As discussed before, you could add a constant vector a to the right hand side, but it can always be converted into a constant-free form by increasing the dimensions of the system, as follows:

$y =\begin{pmatrix} x\\1\end{pmatrix}\label{(7.41)}$

$\frac{dy}{dt} =\begin{pmatrix} A&a\\0&0\end{pmatrix} \begin{pmatrix} x\\1\end{pmatrix} =By \label{(7.42)}$

Note that the last-row, last-column element of the expanded coefficient matrix is now 0, not 1, because of Eq. 6.3.9. This result guarantees that the constant-free form given in Equation \ref{(7.40)} is general enough to represent various dynamics of linear dynamical systems. Now, what is the asymptotic behavior of Equation \ref{(7.40)}? This may not look so intuitive, but it turns out that there is a closed-form solution available for this case as well. Here is the solution, which is generally applicable for any square matrix $$A$$:

$x(t) =c^{At}x(0)\label{(7.43)}$

Here, $$e^{X}$$ is a matrix exponential for a square matrix $$X$$, which is defined as

$e^{X} =\sum ^{\infty}_{k=0}\frac{X^{k}}{k!},\label{(7.44)}$

ith $$X^(0)= I$$. This is a Taylor series-based definition of a usual exponential, but now it is generalized to accept a square matrix instead of a scalar number (which is a 1 x 1 square matrix, by the way). It is known that this infinite series always converges to a well-defined square matrix for any $$X$$. Note that $$e^(X)$$ is the same size as $$X$$.

##### Exercise $$\PageIndex{1}$$

Confirm that the solution Equation \ref{7.43} satisfies Equation \ref{(7.40)}.

The matrix exponential $$e^{X}$$ has some interesting properties. First, its eigenvalues are the exponentials of $$X$$’seigenvalues. Second, its eigenvectors are thesame as $$X$$’s eigenvectors. That is:

$Xv=\lambda{v}\ \Rightarrow \ x^{X}v =e^{\lambda}v\label{(7.45)}$

##### Exercise $$\PageIndex{2}$$

Confirm Equation \ref{(7.45)} using Equation \ref{(7.44)}.

We can use these properties to study the asymptotic behavior of Equation \ref{(7.43)}. As in Chapter 5, we assume that $$A$$ is diagonalizable and thus has as many linearly independent eigenvectors as the dimensions of the state space. Then the initial state of the system can be represented as

$x(0) =b_{1}v_{1}+b_{2}v_{2}+...b_{n}v_{n},\label{(7.46)}$

where $$n$$ is the dimension of the state space and $$vi$$ are the eigenvectors of $$A$$ (and of $$e^{A}$$). Applying this to Equation \ref{(7.43)} results in

$x(t) =e^{At}(b_{1}v_{1}+b_{2}v_{2}+...b_{n}v_{n})\label{(7.47)}$

$=(b_{1}e^{At}v_{1}+b_{2}e^{At}v_{2}+...b_{n}e^{At}v_{n})\label({7.48)}$

$=(b_{1}e^{\lambda_{1} {t}}v_{1}+b_{2}e^{(\lambda_{2} {t}}v_{2}+...b_{n}e^{\lambda_{n}{t}}v_{n}).\label{(7.49)}$

This result shows that the asymptotic behavior of $$x(t)$$ is given by a summation of multiple exponential terms of $$e^{λ_{i}}$$ (note the difference—this was $$λ_{i}$$ for discrete-time models). Therefore, which term eventually dominates others is determined by the absolute value of $$e^{λ_{i}}$$. Because $$|e^{λ_{i}} | = e^{Re(λ_{i})}$$, this means that the eigenvalue that has the largest real part is the dominant eigenvalue for continuous-time models. For example, if $$λ_{1}$$ has the largest real part $$(Re(λ_{1}) > Re(λ_{2}),Re(λ_{3}),...Re(λ_{n}))$$, then

$x(t) =e^{\lambda_{1} {t}}(b_{1}v_{1}+b_{2}e^{(\lambda_{2} -\lambda_{1})t}v_{2}+...b_{n}e^({\lambda_{n} -\lambda_{1})t}v_{n}),\label{(7.50)}$

$\lim_{ t\rightarrow \infty}{x(t)}\approx e^{\lambda_{1} {t}}b_{1}v_{1}.\label{(7.51)}$

Similar to discrete-time models, the dominant eigenvalues and eigenvectors tell us the asymptotic behavior of continuous-time models, but with a little different stability criterion. Namely, if the real part of the dominant eigenvalue is greater than $$0$$, then the system diverges to infinity, i.e., the system is unstable. If it is less than $$0$$, the system eventually shrinks to zero, i.e., the system is stable. If it is precisely $$0$$, then the dominant eigenvector component of the system’s state is conserved with neither divergence nor convergence, and thus the system may converge to a non-zero equilibrium point. The same interpretation can be applied to non-dominant eigenvalues as well.

An eigenvalue tells us whether a particular component of a system’s state (given by its corresponding eigenvector) grows or shrinks over time. For continuous-time models:

• Re($$λ$$) > 0 means that the component is growing.

• Re($$λ$$) < 0 means that the component is shrinking.

• Re($$λ$$) = 0 means that the component is conserved.

For continuous-time models, the real part of the dominant eigenvalue λd determines the stability of the whole system as follows:

• Re$$(λ_{d}) > 0$$: The system is $$unstable$$, diverging to infinity.

• Re$$(λ_{d}) < 0$$: The system is $$stable$$, converging to the origin.

• Re$$(λ_{d}) = 0$$: The system is $$stable$$, but the dominant eigenvector component is conserved, and therefore the system may converge to a non-zero equilibrium point.

Here is an example of a general two-dimensional linear dynamical system in continuous time (a.k.a. the “love affairs” model proposed by Strogatz [29]):

$\frac{dx}{dt} =\begin {pmatrix} a & b \\c & d\end{pmatrix}x=Ax\label{(7.52)}$

The eigenvalues of the coefficient matrix can be obtained by solving the following equation for $$λ$$:

$\det\begin{pmatrix} a-\lambda &b \\c & d-\lambda\end{pmatrix} =0\label{(7.53)}$

Or:

$(a-\lambda)(d-\lambda)-bc =\lambda^{2} -(a+d)\lambda +ad-bc \label{(7.54)}$

$=\lambda^{2} -Tr(A)\lambda +det(A)=0\label{(7.55)}$

Here, $$Tr(A)$$ is the trace of matrix $$A$$, i.e., the sum of its diagonal components. The solutions of the equation above are
$\lambda = \frac{Tr(A)\pm \sqrt{Tr(A)^{2}-4det(A)}}{2}.\label{(7.56)}$

Between those two eigenvalues ,which one isdominant? Since the radical on the numerator gives either a non-negative real value or an imaginary value, the one with a “plus” sign always has the greater real part. Now we can find the conditions for which this system is stable. The real part of this dominant eigenvalue is given as follows:

$Re(\lambda_{d}) = \begin{cases} & \frac{Tr(A)}{2} \text{ if } Tr(A)^{2} <4det(A) \\& \frac{Tr(A) + \sqrt{Tr(A)^{2}-4det(A)}}{2} \text { if } Tr(A)^{2} \geq 4det(A)\end{cases} \label{(7.57)}$

If $$Tr(A)^{2} < 4 \ det(A)$$, the stability condition is simply

$Tr(A) <0.\label{(7.58)}$

If $$Tr(A)^{2} ≥ 4 \ det(A)$$, the stability condition is derived as follows:

$Tr(A) +\sqrt{Tr(A)^{2} -4 \ det(A) }<0\label{(7.59)}$

$\sqrt{Tr(A)^{2}-4 \ det(A)} <-Tr(A)\label{(7.60)}$

Since the radical on the left hand side must be non-negative, $$Tr(A)$$ must be negative, at least. Also, by squaring both sides, we obtain

$Tr(A)^{2}-4det(A)<Tr(A)^{2}\label{(7.61)}$

$-4det(A)<0,\label{(7.62)}$

$det(A) >0.\label{(7.63)}$

By combining all the results above, we can summarize how the two-dimensional linear dynamical system’s stability depends on $$Tr(A)$$ and $$det(A)$$ in a simple diagram as shown in Fig. 7.5. Note that this diagram is applicable only to two-dimensional systems, and it is not generalizable for systems that involve three or more variables.

##### Exercise $$\PageIndex{1}$$

Show that the unstable points with $$det(A) < 0$$ are saddle points.

##### Exercise $$\PageIndex{2}$$

Determine the stability of the following linear systems:

$\cdot \frac{dx}{dt}= \begin{pmatrix} -1 & 2\\2 &-2 \end{pmatrix} x \nonumber$

$\cdot \frac{dx}{dt} =\begin{pmatrix} 0.5 & -1.5\\ 1&-1\end{pmatrix} x \nonumber$

##### Exercise $$\PageIndex{3}$$

Confirm the analytical result shown in Fig. 7.4.1 by conducting numerical simulations in Python and by drawing phase spaces of the system for several samples of $$A$$.

This page titled 7.4: Asymptotic Behavior of Continuous-Time Linear Dynamical Systems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Hiroki Sayama (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform.