Skip to main content
Mathematics LibreTexts

2.1: Iterations of real quadratic functions

  • Page ID
    101321

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Iteration diagram

    We can trace real maps xn+1 = f( xn ) dynamics on 2D the "iteration diagram" to the left below. Dependence xn on n is plotted to the right.
    Controls: Drag the blue curve to change C and xo value. Press <Enter> to set new parameter values from text fields.

    2.1.1.jpg
    Figure \(\PageIndex{1}\)

    Here the blue curve is the map f oN(x) = f(f(...f(x))). -2 ≤ x, y ≤ 2. For N = 1 we get y(0) = f(0) = C and C value coincides with Y coordinate. Iterations begin from the starting point xo .

    2.1.2.png
    Figure \(\PageIndex{2}\)

    To plot the iteration diagram we draw the vertical red line from xo toward the blue curve y = f(x) = x2 + c, where y1 = f(xo ). To get the second iteration we draw the red horizontal line to the green y = x one, where x1 = y1 = f(xo ). Then draw again the vertical line to the blue curve to get y2 = f(x1 ) and so on.

    Points fc: xo → x1 → x2 → ... for some value c and xo form the orbit of xo.

    Fixed points, attracting cycles and bifurcations

    2.1.3.png
    Figure \(\PageIndex{3}\)

    Fixed points of a map   x = f(x) correspond to intersections of the y = x and y = f(x) (green and blue) curves. E.g. for C = -1/2 iterations go away unstable fixed point (the right intersection) and converge to attracting fixed point to the left.

    2.1.4.jpg
    Figure \(\PageIndex{4}\)
    2.1.5.png
    Figure \(\PageIndex{5}\)

    For c < -0.75 the left attracting fixed point becomes repelling and iterations converge to attracting period-2 orbit   x1 → x2 → x1 ... The map f o2 has two attracting fixed points x1, x2 (on the right image). Such qualitative change in map dynamics is called bifurcation. Drag the blue curve to watch the bifurcation.

     

     

     


    This page titled 2.1: Iterations of real quadratic functions is shared under a Public Domain license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.