2.1: Substitution
( \newcommand{\kernel}{\mathrm{null}\,}\)
Recall that the chain rule states that
(f(g(x)))' = f'(g(x))g'(x). \nonumber
Integrating both sides we get:
\int[f(g(x)]'dx = \int[f'(g(x)g'(x)dx] \nonumber
or
\int f'\left( g(x) \right) \, g' (x) \, dx = f\left(g(x)\right) + C \nonumber
Calculate
\int \dfrac{2x}{x^2+1}\, dx = \int 2x\left( x^2+1\right)^{-2} \, dx. \nonumber
Solution
Let
u = x^2 +1 \nonumber
then
\dfrac{du}{dx} = 2x \nonumber
and
du = 2x \,dx. \nonumber
We substitute:
\int u^{-2} du = -u^{-1} + C = (x^2 +1)^{-1} + C. \nonumber
Steps:
- Find the function derivative pair (f and f').
- Let u = f(x).
- Find du/dx and adjust for constants.
- Substitute.
- Integrate.
- Resubstitute.
We will try many more examples including those such as
\int x\, \sin(x^2)\, dx, \nonumber
\int x\, \sqrt{x - 2}\, dx. \nonumber
Contributors and Attributions
- Larry Green (Lake Tahoe Community College)
Integrated by Justin Marshall.