Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

4.6: Section 6-Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Use the method of direct proof to prove the following statements. 

Exercise \PageIndex{1}

If x is an even integer, then x^2 is even.

Exercise \PageIndex{2}

If x is an odd integer, then x^3 is odd.

Exercise \PageIndex{3}

If a is an odd integer, then a^2+3a+5 is odd.

Exercise \PageIndex{4}

Suppose x,y \in \mathbb{Z}. If x and y are odd, then xy is odd.

Exercise \PageIndex{5}

Suppose x, y \in \mathbb{Z}. If x is even, then xy is even.

Exercise \PageIndex{6}

Suppose a, b, c \in \mathbb{Z}. If a|b and a|c, then a|(b+c)

Exercise \PageIndex{7}

Suppose a, b \in \mathbb{Z}. If a|b, then a^{2}|b^{2}.

Exercise \PageIndex{8}

Suppose a is an integer. If 5|2a, then 5|a.

Exercise \PageIndex{9}

Suppose a is an integer. If 7|4a, then 7|a.

Exercise \PageIndex{10}

Suppose a and b are integers. If a|b, then a|(3b^3-b2+5b).

Exercise \PageIndex{11}

Suppose a, b, c, d \in \mathbb{Z}. If a|b and c|d, then ac|bd

Exercise \PageIndex{12}

If x \in \mathbb{R} and 0<x<4, then \frac{4}{x(4−x)} \ge 1

Exercise \PageIndex{13}

Suppose x, y \in \mathbb{R}. If x^2+5y = y^2+5x, then x=y or x+y = 5.

Exercise \PageIndex{14}

If n \in \mathbb{Z}, then 5n^2+3n+7 is odd. (Trycases.)

Exercise \PageIndex{15}

If n \in \mathbb{Z}, then n^2+3n+4 is even. (Trycases.)

Exercise \PageIndex{16}

If two integers have the same parity, then their sum is even. (Try cases.)

Exercise \PageIndex{17}

If two integers have opposite parity, then their product is even.

Exercise \PageIndex{18}

Suppose x and y are positive real numbers. If x < y, then x^{2} < y^{2}.

Exercise \PageIndex{19}

Suppose a, b and c are integers. If a^{2}|b and b^{3}|c, then a^6|c.

Exercise \PageIndex{20}

If a is an integer and a^{2}|a, then a \in \{−1, 0, 1\}.

Exercise \PageIndex{21}

If p is prime and k is an integer for which 0<k<p, then p divides {p \choose k}.

Exercise \PageIndex{22}

If n \in \mathbb{N}, then n^{2} = 2{n \choose 2} + {n \choose 1}. (You may need a separate case for n = 1.)

Exercise \PageIndex{23}

If n \in \mathbb{N}, then {2n \choose n} is even.

Exercise \PageIndex{24}

If n \in \mathbb{N} and n \ge 2, then the numbers n!+2, n!+3, n!+4, n!+5, \cdots , n!+n are all composite. (Thus for any n \ge 2, one can find n - 1 consecutive composite numbers. This means there are arbitrarily large “gaps” between prime numbers.)

Exercise \PageIndex{25}

If a, b, c \in \mathbb{N} and c \le b \le a, then {a \choose b}{a \choose c} = {a \choose b-c}{a-b+c \choose c}.

Exercise \PageIndex{26}

Every odd integer is a difference of two squares. (Example 7 = 4^{2}-3^{2}, etc.)

Exercise \PageIndex{27}

Suppose a, b \in \mathbb{N}. If gcd(a, b) > 1, then b|a or b is not prime.

Exercise \PageIndex{28}

Let a, b, c \in \mathbb{Z}. Suppose a and b are not both zero, and c \ne 0. Prove that c \cdot gcd(a,b) \le  gcd(ca, cb).


This page titled 4.6: Section 6-Exercises is shared under a CC BY-NC-ND license and was authored, remixed, and/or curated by Richard Hammack.

Support Center

How can we help?