Skip to main content
Mathematics LibreTexts

5.4: Section 4-

  • Page ID
    33717
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A. Prove the following statements with contrapositive proof. (In each case, think about how a direct proof would work. In most cases contrapositive is easier.)

    Exercise \(\PageIndex{1}\)

    Suppose \(n \in \mathbb{Z}\). If \(n^2\) is even, then n is even.

    Exercise \(\PageIndex{2}\)

    Suppose \(n \in \mathbb{Z}\). If \(n^2\) is odd, then n is odd.

    Exercise \(\PageIndex{3}\)

    Suppose \(a, b \in \mathbb{Z}\). If \(a^{2}(b^2-2b)\) is odd, then a and b are odd.

    Exercise \(\PageIndex{4}\)

    Suppose \(a, b, c \in \mathbb{Z}\). If a does not divide bc, then a does not divide b.

    Exercise \(\PageIndex{5}\)

    Suppose \(x \in \mathbb{R}\). If \(x^2+5x < 0\) then \(x < 0\).

    Exercise \(\PageIndex{6}\)

    Suppose \(x \in \mathbb{R}\). If \(x^3-x > 0\) then \(x > -1\).

    Exercise \(\PageIndex{7}\)

    Suppose \(a, b \in \mathbb{Z}\). If both ab and \(a+b\) are even, then both a and b are even.

    Exercise \(\PageIndex{8}\)

    Suppose \(x \in \mathbb{R}\). If \(x^5-4x^4+3x^3-x^2+3x-4 \ge 0\), then \(x \ge 0\).

    Exercise \(\PageIndex{9}\)

    Suppose \(n \in \mathbb{Z}\). If \(3�� \nmid n^2\), then \(3�� \nmid n\).

    Exercise \(\PageIndex{10}\)

    Suppose \(x, y, z \in \mathbb{Z}\) and \(x \ne 0\). If \(x \nmid ��yz\), then \(x \nmid ��y\) and \(x \nmid ��z\).

    Exercise \(\PageIndex{11}\)

    Suppose \(x, y \in \mathbb{Z}\). If \(x^{2}(y+3)\) is even, then x is even or y is odd.

    Exercise \(\PageIndex{12}\)

    Suppose \(a \in \mathbb{Z}\). If \(a^2\) is not divisible by 4, then a is odd.

    Exercise \(\PageIndex{13}\)

    Suppose \(x \in \mathbb{R}\). If \(x^5+7x^3+5x \ge x^4+x^2+8\), then \(x \ge 0\).

    B. Prove the following statements using either direct or contrapositive proof.

    Exercise \(\PageIndex{14}\)

    If \(a, b \in \mathbb{Z}\) and a and b have the same parity, then \(3a+7\) and \(7b-4\) do not.

    Exercise \(\PageIndex{15}\)

    Suppose \(x \in \mathbb{Z}\). If \(x^3-1\) is even, then x is odd.

    Exercise \(\PageIndex{16}\)

    Suppose \(x, y \in \mathbb{Z}\). If \(x+y\) is even, then x and y have the same parity.

    Exercise \(\PageIndex{17}\)

    If n is odd, then \(8|(n^2-1)\).

    Exercise \(\PageIndex{18}\)

    If \(a, b \in \mathbb{Z}\), then \((a+b)^{3} \equiv a^3+b^3 \pmod{3}\).

    Exercise \(\PageIndex{19}\)

    Let \(a, b, c \in \mathbb{Z}\) and \(n \in \mathbb{N}\). If  \(a \equiv b \pmod{n}\) and \(a \equiv c \pmod{n}\), then \(c \equiv b \pmod{n}\).

    Exercise \(\PageIndex{20}\)

    If \(a \in \mathbb{Z}\) and \(a \equiv 1 \pmod{5}\), then \(a^2 \equiv 1 \pmod{5}\).

    Exercise \(\PageIndex{21}\)

    Let \(a, b \in \mathbb{Z}\) and \(n \in \mathbb{N}\). If \(a \equiv b \pmod{n}\), then \(a^3 \equiv b^3 \pmod{n}\).

     

     

     

     

     

    1. Let a∈Z, n∈N. If has remainder when divided by n, then a(mod n).

    2. Leta,b∈Zandn∈N.Ifab(modn),thena2≡ab(modn).

    3. If a(mod n) and c(mod n), then acbd (mod n).

    4. Letn∈N.If2n−1isprime,thennisprime.

    5. Ifn=2k−1fork∈N,theneveryentryinRownofPascal’sTriangleisodd.

    6. If a≡0 (mod 4) or a≡1 (mod 4), then ��a2�� is even.

    7. Ifn∈Z,then4��(n2−3).

    8. Ifintegersaandbarenotbothzero,thengcd(a,b)=gcd(ab,b).

    9. Ifab(modn),thengcd(a,n)=gcd(b,n).

    10. Suppose the division algorithm applied to and yields qb r. Prove gcd(ab) = gcd(rb).

    11. If ≡ (mod n), then and have the same remainder when divided by n

     

     

     

     

     

     

     

     


    This page titled 5.4: Section 4- is shared under a CC BY-NC-ND license and was authored, remixed, and/or curated by Richard Hammack.

    • Was this article helpful?