10.5: Add, Subtract, and Multiply Radical Expressions
- Last updated
- Aug 24, 2020
- Save as PDF
- Page ID
- 49979
( \newcommand{\kernel}{\mathrm{null}\,}\)
Learning Objectives
By the end of this section, you will be able to:
- Add and subtract radical expressions
- Multiply radical expressions
- Use polynomial multiplication to multiply radical expressions
Before you get started, take this readiness quiz.
- Add: 3x2+9x−5−(x2−2x+3).
If you missed this problem, review Example 5.5. - Simplify: (2+a)(4−a).
If you missed this problem, review Example 5.28. - Simplify: (9−5y)2.
If you missed this problem, review Example 5.31.
Add and Subtract Radical Expressions
Adding radical expressions with the same index and the same radicand is just like adding like terms. We call radicals with the same index and the same radicand like radicals to remind us they work the same as like terms.
Definition 10.5.1: Like Radicals
Like radicals are radical expressions with the same index and the same radicand.
We add and subtract like radicals in the same way we add and subtract like terms. We know that 3x+8x is 11x.Similarly we add 3√x+8√x and the result is 11√x.
Think about adding like terms with variables as you do the next few examples. When you have like radicals, you just add or subtract the coefficients. When the radicals are not like, you cannot combine the terms.
Example 10.5.1
Simplify:
- 2√2−7√2
- 53√y+43√y
- 74√x−24√y
Solution:
a.
2√2−7√2
Since the radicals are like, we subtract the coefficients.
−5√2
b.
53√y+43√y
Since the radicals are like, we add the coefficients.
93√y
c.
74√x−24√y
The indices are the same but the radicals are different. These are not like radicals. Since the radicals are not like, we cannot subtract them.
Exercise 10.5.1
Simplify:
- 8√2−9√2
- 43√x+73√x
- 34√x−54√y
- Answer
-
- −√2
- 113√x
- 34√x−54√y
Exercise 10.5.2
Simplify:
- 5√3−9√3
- 53√y+33√y
- 54√m−23√m
- Answer
-
- −4√3
- 83√y
- 54√m−23√m
For radicals to be like, they must have the same index and radicand. When the radicands contain more than one variable, as long as all the variables and their exponents are identical, the radicands are the same.
Example 10.5.2
Simplify:
- 2√5n−6√5n+4√5n
- 4√3xy+54√3xy−44√3xy
Solution:
a.
2√5n−6√5n+4√5n
Since the radicals are like, we combine them.
0√5n
Simplify.
0
b.
4√3xy+54√3xy−44√3xy
Since the radicals are like, we combine them.
24√3xy
Exercise 10.5.3
Simplify:
- √7x−7√7x+4√7x
- 44√5xy+24√5xy−74√5xy
- Answer
-
- −2√7x
- −4√5xy
Exercise 10.5.4
Simplify:
- 4√3y−7√3y+2√3y
- 63√7mn+3√7mn−43√7mn
- Answer
-
- −√3y
- 33√7mn
Remember that we always simplify radicals by removing the largest factor from the radicand that is a power of the index. Once each radical is simplified, we can then decide if they are like radicals.
Example 10.5.3
Simplify:
- √20+3√5
- 3√24−3√375
- 124√48−234√243
Solution:
a.
√20+3√5
Simplify the radicals, when possible.
√4⋅√5+3√5
2√5+3√5
Combine the like radicals.
5√5
b.
3√24−3√375
Simplify the radicals.
3√8⋅3√3−3√125⋅3√3
23√3−53√3
Combine the like radicals.
−33√3
c.
124√48−234√243
Simplify the radicals.
124√16⋅4√3−234√81⋅4√3
12⋅2⋅4√3−23⋅3⋅4√3
4√3−24√3
Combine the like radicals.
−4√3
Exercise 10.5.5
Simplify:
- √18+6√2
- 63√16−23√250
- 233√81−123√24
- Answer
-
- 9√2
- 23√2
- 3√3
Exercise 10.5.6
Simplify:
- √27+4√3
- 43√5−73√40
- 123√128−533√54
- Answer
-
- 7√3
- −103√5
- −33√2
In the next example, we will remove both constant and variable factors from the radicals. Now that we have practiced taking both the even and odd roots of variables, it is common practice at this point for us to assume all variables are greater than or equal to zero so that absolute values are not needed. We will use this assumption thoughout the rest of this chapter.
Example 10.5.4
Simplify:
- 9√50m2−6√48m2
- 3√54n5−3√16n5
Solution:
a.
9√50m2−6√48m2
Simplify the radicals.
9√25m2⋅√2−6√16m2⋅√3
9⋅5m⋅√2−6⋅4m⋅√3
45m√2−24m√3
The radicals are not like and so cannot be combined.
b.
3√54n5−3√16n5
Simplify the radicals.
3√27n3⋅3√2n2−3√8n3⋅3√2n2
3n3√2n2−2n3√2n2
Combine the like radicals.
n3√2n2
Exercise 10.5.7
Simplify:
- √32m7−√50m7
- 3√135x7−3√40x7
- Answer
-
- −m3√2m
- x23√5x
Exercise 10.5.8
Simplify:
- √27p3−√48p3
- 3√256y5−3√32n5
- Answer
-
- −p√3p
- 4y3√4y2−2n3√4n2
Multiply Radical Expressions
We have used the Product Property of Roots to simplify square roots by removing the perfect square factors. We can use the Product Property of Roots ‘in reverse’ to multiply square roots. Remember, we assume all variables are greater than or equal to zero.
We will rewrite the Product Property of Roots so we see both ways together.
Definition 10.5.2: Product Property of Roots
For any real numbers, n√a and b√n, and for any integer n≥2
n√ab=n√a⋅n√b and n√a⋅n√b=n√ab
When we multiply two radicals they must have the same index. Once we multiply the radicals, we then look for factors that are a power of the index and simplify the radical whenever possible.
Multiplying radicals with coefficients is much like multiplying variables with coefficients. To multiply 4x⋅3y we multiply the coefficients together and then the variables. The result is 12xy. Keep this in mind as you do these examples.
Example 10.5.5
Simplify:
- (6√2)(3√10)
- (−53√4)(−43√6)
Solution:
a.
(6√2)(3√10)
Multiply using the Product Property.
18√20
Simplify the radical.
18√4⋅√5
Simplify.
18⋅2⋅√5
36√5
b.
(−53√4)(−43√6)
Multiply using the Product Property.
203√24
Simplify the radical.
203√8⋅3√3
Simplify.
20⋅2⋅3√3
403√3
Exercise 10.5.9
Simplify:
- (3√2)(2√30)
- (23√18)(−33√6)
- Answer
-
- 12√15
- −183√2
Exercise 10.5.10
Simplify:
- (3√3)(3√6)
- (−43√9)(33√6)
- Answer
-
- 27√2
- −363√2
We follow the same procedures when there are variables in the radicands.
Example 10.5.6
Simplify:
- (10√6p3)(4√3p)
- (24√20y2)(34√28y3)
Solution:
a.
(10√6p3)(4√3p)
Multiply.
40√18p4
Simplify the radical.
40√9p4⋅√2
Simplify.
40⋅3p2⋅√3
120p2√3
b. When the radicands involve large numbers, it is often advantageous to factor them in order to find the perfect powers.
(24√20y2)(34√28y3)
Multiply.
64√4⋅5⋅4⋅7y5
Simplify the radical.
64√16y4⋅4√35y
Simplify.
6⋅2y4√35y
Multiply.
12y4√35y
Exercise 10.5.11
Simplify:
- (6√6x2)(8√30x4)
- (−44√12y3)(−4√8y3)
- Answer
-
- 36x3√5
- 8y4√3y2
Exercise 10.5.12
Simplify:
- (2√6y4)(12√30y)
- (−44√9a3)(34√27a2)
- Answer
-
- 144y2√5y
- −364√3a
Use Polynomial Multiplication to Multiply Radical Expressions
In the next a few examples, we will use the Distributive Property to multiply expressions with radicals. First we will distribute and then simplify the radicals when possible.
Example 10.5.7
Simplify:
- √6(√2+√18)
- 3√9(5−3√18)
Solution:
a.
√6(√2+√18)
Multiply.
√12+√108
Simplify.
√4⋅√3+√36⋅√3
Simplify.
2√3+6√3
Combine like radicals.
8√3
b.
3√9(5−3√18)
Distribute.
53√9−3√162
Simplify.
53√9−3√27⋅3√6
Simplify.
53√9−33√6
Exercise 10.5.13
Simplify:
- √6(1+3√6)
- 3√4(−2−3√6)
- Answer
-
- 18+√6
- −23√4−23√3
Exercise 10.5.14
Simplify:
- √8(2−5√8)
- 3√3(−3√9−3√6)
- Answer
-
- −40+4√2
- −3−3√18
When we worked with polynomials, we multiplied binomials by binomials. Remember, this gave us four products before we combined any like terms. To be sure to get all four products, we organized our work—usually by the FOIL method.
Example 10.5.8
Simplify:
- (3−2√7)(4−2√7)
- (3√x−2)(3√x+4)
Solution:
a.
(3−2√7)(4−2√7)
Multiply.
12−6√7−8√7+4⋅7
Simplify.
12−6√7−8√7+28
Combine like terms.
40−14√7
b.
(3√x−2)(3√x+4)
Multiply.
3√x2+43√x−23√x−8
Combine like terms.
3√x2+23√x−8
Exercise 10.5.15
Simplify:
- (6−3√7)(3+4√7)
- (3√x−2)(3√x−3)
- Answer
-
- −66+15√7
- 3√x2−53√x+6
Exercise 10.5.16
Simplify:
- (2−3√11)(4−√11)
- (3√x+1)(3√x+3)
- Answer
-
- 41−14√11
- 3√x2+43√x+3
Example 10.5.9
Simplify: (3√2−√5)(√2+4√5)
Solution:
(3√2−√5)(√2+4√5)
Multiply.
3⋅2+12√10−√10−4⋅5
Simplify.
6+12√10−√10−20
Combine like terms.
−14+11√10
Exercise 10.5.17
Simplify: (5√3−√7)(√3+2√7)
- Answer
-
1+9√21
Exercise 10.5.18
Simplify: (√6−3√8)(2√6+√8)
- Answer
-
−12−20√3
Recognizing some special products made our work easier when we multiplied binomials earlier. This is true when we multiply radicals, too. The special product formulas we used are shown here.
Special Products
Binomial Squares
(a+b)2=a2+2ab+b2(a−b)2=a2−2ab+b2
Product of Conjugates
(a+b)(a−b)=a2−b2
We will use the special product formulas in the next few examples. We will start with the Product of Binomial Squares Pattern.
Example 10.5.10
Simplify:
- (2+√3)2
- (4−2√5)2
Solution:
a.
![]() |
|
Multiply using the Product of Binomial Squares Pattern. | ![]() |
Simplify. | ![]() |
Combine like terms. | ![]() |
b.
|
|
Multiple, using the Product of Binomial Squares Pattern. |
|
Simplify. |
|
|
|
Combine like terms. |
|
Exercise 10.5.19
Simplify:
- (10+√2)2
- (1+3√6)2
- Answer
-
- 102+20√2
- 55+6√6
Exercise 10.5.20
Simplify:
- (6−√5)2
- (9−2√10)2
- Answer
-
- 41−12√5
- 121−36√10
In the next example, we will use the Product of Conjugates Pattern. Notice that the final product has no radical.
Example 10.5.11
Simplify: (5−2√3)(5+2√3)
Solution:
|
|
Multiply using the Product of Conjugates Pattern. |
|
Simplify. |
|
|
Exercise 10.5.21
Simplify: (3−2√5)(3+2√5)
- Answer
-
−11
Exercise 10.5.22
Simplify: (4+5√7)(4−5√7)
- Answer
-
−159
Access these online resources for additional instruction and practice with adding, subtracting, and multiplying radical expressions.
- Multiplying Adding Subtracting Radicals
- Multiplying Special Products: Square Binomials Containing Square Roots
- Multiplying Conjugates
Key Concepts
- Product Property of Roots
- For any real numbers, n√a and n√b, and for any integer n≥2 n√ab=n√a⋅n√b and n√a⋅n√b=n√ab
- Special Products
Binomial Squares Product of Conjugates(a+b)2=a2+2ab+b2(a+b)(a−b)=a2−b2(a−b)2=a2−2ab+b2
Glossary
- like radicals
- Like radicals are radical expressions with the same index and the same radicand.