7.E: Exercises
- Last updated
- May 12, 2023
- Save as PDF
- Page ID
- 128025
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercise 7.E.1
If A is an invertible n×n matrix, compare the eigenvalues of A and A−1. More generally, for m an arbitrary integer, compare the eigenvalues of A and Am.
- Answer
-
AmX=λmX for any integer. In the case of −1,A−1λX=AA−1X=X so A−1X=λ−1X. Thus the eigenvalues of A−1 are just λ−1 where λ is an eigenvalue of A.
Exercise 7.E.2
If A is an n×n matrix and c is a nonzero constant, compare the eigenvalues of A and cA.
- Answer
-
Say AX=λX. Then cAX=cλX and so the eigenvalues of cA are just cλ where λ is an eigenvalue of A.
Exercise 7.E.3
Let A,B be invertible n×n matrices which commute. That is, AB=BA. Suppose X is an eigenvector of B. Show that then AX must also be an eigenvector for B.
- Answer
-
BAX=ABX=AλX=λAX. Here it is assumed that BX=λX.
Exercise 7.E.4
Suppose A is an n×n matrix and it satisfies Am=A for some m a positive integer larger than 1. Show that if λ is an eigenvalue of A then |λ| equals either 0 or 1.
- Answer
-
Let X be the eigenvector. Then AmX=λmX,AmX=AX=λX and so λm=λ Hence if λ≠0, then λm−1=1 and so |λ|=1.
Exercise 7.E.5
Show that if AX=λX and AY=λY, then whenever k,p are scalars, A(kX+pY)=λ(kX+pY) Does this imply that kX+pY is an eigenvector? Explain.
- Answer
-
The formula follows from properties of matrix multiplications. However, this vector might not be an eigenvector because it might equal 0 and eigenvectors cannot equal 0.
Exercise 7.E.6
Suppose A is a 3×3 matrix and the following information is available. A[0−1−1]=0[0−1−1]A[111]=−2[111]A[−2−3−2]=−2[−2−3−2] Find A[1−43].
Exercise 7.E.7
Suppose A is a 3×3 matrix and the following information is available. A[−1−2−2]=1[−1−2−2]A[111]=0[111]A[−1−4−3]=2[−1−4−3] Find A[3−43].
Exercise 7.E.8
Suppose A is a 3×3 matrix and the following information is available. A[0−1−1]=2[0−1−1]A[111]=1[111]A[−3−5−4]=−3[−3−5−4] Find A[2−33].
Exercise 7.E.9
Find the eigenvalues and eigenvectors of the matrix [−6−9212000−2−314] One eigenvalue is −2.
Exercise 7.E.10
Find the eigenvalues and eigenvectors of the matrix [−2−17−6000193] One eigenvalue is 1.
Exercise 7.E.11
Find the eigenvalues and eigenvectors of the matrix [9282−6−2−82−5] One eigenvalue is −3.
Exercise 7.E.12
Find the eigenvalues and eigenvectors of the matrix [67616−2−21−426417] One eigenvalue is −2.
Exercise 7.E.13
Find the eigenvalues and eigenvectors of the matrix [352−8−11−410113] One eigenvalue is −3.
Exercise 7.E.14
Is it possible for a nonzero matrix to have only 0 as an eigenvalue?
- Answer
-
Yes. [0100] works.
Exercise 7.E.15
If A is the matrix of a linear transformation which rotates all vectors in R2 through 60∘, explain why A cannot have any real eigenvalues. Is there an angle such that rotation through this angle would have a real eigenvalue? What eigenvalues would be obtainable in this way?
Exercise 7.E.16
Let A be the 2×2 matrix of the linear transformation which rotates all vectors in R2 through an angle of θ. For which values of θ does A have a real eigenvalue?
- Answer
-
When you think of this geometrically, it is clear that the only two values of θ are 0 and π or these added to integer multiples of 2π.
Exercise 7.E.17
Let T be the linear transformation which reflects vectors about the x axis. Find a matrix for T and then find its eigenvalues and eigenvectors.
- Answer
-
The matrix of T is [100−1]. The eigenvectors and eigenvalues are: {[01]}↔−1,{[10]}↔1
Exercise 7.E.18
Let T be the linear transformation which rotates all vectors in R2 counterclockwise through an angle of π/2. Find a matrix of T and then find eigenvalues and eigenvectors.
- Answer
-
The matrix of T is [0−110]. The eigenvectors and eigenvalues are: {[−i1]}↔−i,{[i1]}↔i
Exercise 7.E.19
Let T be the linear transformation which reflects all vectors in R3 through the xy plane. Find a matrix for T and then obtain its eigenvalues and eigenvectors.
- Answer
-
The matrix of T is [10001000−1]. The eigenvectors and eigenvalues are: {[001]}↔−1,{[100],[010]}↔1
Exercise 7.E.20
Find the eigenvalues and eigenvectors of the matrix [5−18−320542−5−11] One eigenvalue is 1. Diagonalize if possible.
- Answer
-
The eigenvalues are −1,−1,1. The eigenvectors corresponding to the eigenvalues are: {[10−23]}↔−1,{[7−22]}↔1 Therefore this matrix is not diagonalizable.
Exercise 7.E.21
Find the eigenvalues and eigenvectors of the matrix [−12−282849−8−4−89] One eigenvalue is 3. Diagonalize if possible.
- Answer
-
The eigenvectors and eigenvalues are: {[201]}↔1,{[−210]}↔1,{[7−22]}↔3 The matrix P needed to diagonalize the above matrix is [2−2701−2102] and the diagonal matrix D is [100010003]
Exercise 7.E.22
Find the eigenvalues and eigenvectors of the matrix [893826814240−30−12−90] One eigenvalue is −3. Diagonalize if possible.
- Answer
-
The eigenvectors and eigenvalues are: {[−6−1−2]}↔6,{[−5−22]}↔−3,{[−8−23]}↔2 The matrix P needed to diagonalize the above matrix is [−6−5−8−1−2−2223] and the diagonal matrix D is [6000−3000−2]
Exercise 7.E.23
Find the eigenvalues and eigenvectors of the matrix [19000−20389−2] One eigenvalue is 1. Diagonalize if possible.
Exercise 7.E.24
Find the eigenvalues and eigenvectors of the matrix [114530102620−20−60−44] One eigenvalue is 1. Diagonalize if possible.
Exercise 7.E.25
Find the eigenvalues and eigenvectors of the matrix [952524−196−53−48−164−42−43] One eigenvalue is 5. Diagonalize if possible.
Exercise 7.E.26
Suppose A is an n×n matrix and let V be an eigenvector such that AV=λV. Also suppose the characteristic polynomial of A is det Explain why (A^n+a_{n-1}A^{n-1}+\cdots +a_1A+a_0I)V=0\nonumber If A is diagonalizable, give a proof of the Cayley Hamilton theorem based on this. This theorem says A satisfies its characteristic equation A^n+a_{n-1}A^{n-1}+\cdots +a_1A+a_0I=0\nonumber
Exercise \PageIndex{27}
Suppose the characteristic polynomial of an n\times n matrix A is 1−X^n. Find A^{mn} where m is an integer.
- Answer
-
The eigenvalues are distinct because they are the nth roots of 1. Hence if X is a given vector with X=\sum\limits_{j=1}^na_jV_j\nonumber then A^{nm}X=A^{nm}\sum\limits_{j=1}^na_jV_j=\sum\limits_{j=1}^na_jA^{nm}V_j=\sum\limits_{j=1}^na_jV_j=X\nonumber so A^{nm}=I.
Exercise \PageIndex{28}
Find the eigenvalues and eigenvectors of the matrix \left[\begin{array}{rrr}15&-24&7\\-6&5&-1\\-58&76&-20\end{array}\right]\nonumber One eigenvalue is −2. Diagonalize if possible. Hint: This one has some complex eigenvalues.
Exercise \PageIndex{29}
Find the eigenvalues and eigenvectors of the matrix \left[\begin{array}{rrr}15&-25&6\\-13&23&-4\\-91&155&-30\end{array}\right]\nonumber One eigenvalue is 2. Diagonalize if possible. Hint: This one has some complex eigenvalues.
Exercise \PageIndex{30}
Find the eigenvalues and eigenvectors of the matrix \left[\begin{array}{rrr}-11&-12&4\\8&17&-4\\-4&28&-3\end{array}\right]\nonumber One eigenvalue is 1. Diagonalize if possible. Hint: This one has some complex eigenvalues.
Exercise \PageIndex{31}
Find the eigenvalues and eigenvectors of the matrix \left[\begin{array}{rrr}14&-12&5\\-6&2&-1\\-69&51&-21\end{array}\right]\nonumber One eigenvalue is −3. Diagonalize if possible. Hint: This one has some complex eigenvalues.
Exercise \PageIndex{32}
Suppose A is an n\times n matrix consisting entirely of real entries but a + ib is a complex eigenvalue having the eigenvector, X +iY Here X and Y are real vectors. Show that then a−ib is also an eigenvalue with the eigenvector, X − iY. Hint: You should remember that the conjugate of a product of complex numbers equals the product of the conjugates. Here a+ib is a complex number whose conjugate equals a−ib.
- Answer
-
AX = (a+ib)X. Now take conjugates of both sides. Since A is real, A\overline{X}=(a-ib)\overline{X}\nonumber
Exercise \PageIndex{33}
Let A=\left[\begin{array}{cc}1&2\\2&1\end{array}\right]. Diagonalize A to find A^{10}.
- Answer
-
First we write A=PDP^{-1}. \left[\begin{array}{cc}1&2\\2&1\end{array}\right]=\left[\begin{array}{rr}-1&1\\1&1\end{array}\right]\left[\begin{array}{rr}-1&0\\0&3\end{array}\right]=\left[\begin{array}{rr}-\frac{1}{2}&\frac{1}{2} \\ \frac{1}{2}&\frac{1}{2}\end{array}\right]\nonumber Therefore A^{10}=PD^{10}P^{-1}. \begin{aligned}\left[\begin{array}{cc}1&2\\2&1\end{array}\right]^{10}&=\left[\begin{array}{rr}-1&1\\1&1\end{array}\right]\left[\begin{array}{rr}-1&0\\0&3\end{array}\right]^{10}\left[\begin{array}{rr}-\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}&\frac{1}{2}\end{array}\right] \\ &=\left[\begin{array}{rr}-1&1\\1&1\end{array}\right]\left[\begin{array}{rr}(-1)^{10}&0\\0&3^{10}\end{array}\right]\left[\begin{array}{rr}-\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}&\frac{1}{2}\end{array}\right] \\ &=\left[\begin{array}{rr}29525&29524 \\ 29524&29525\end{array}\right]\end{aligned}
Exercise \PageIndex{34}
Let A=\left[\begin{array}{ccc}1&4&1\\0&2&5\\0&0&5\end{array}\right]. Diagonalize A to find A^{50}.
Exercise \PageIndex{35}
Let A=\left[\begin{array}{rrr}1&-2&-1\\2&-1&1\\-2&3&1\end{array}\right]. Diagonalize A to find A^{100}.
Exercise \PageIndex{36}
The following is a Markov (migration) matrix for three locations \left[\begin{array}{ccc}\frac{7}{10}&\frac{1}{9}&\frac{1}{5} \\ \frac{1}{10}&\frac{7}{9}&\frac{2}{5} \\ \frac{1}{5}&\frac{1}{9}&\frac{2}{5}\end{array}\right]\nonumber
- Initially, there are 90 people in location 1,\: 81 in location 2, and 85 in location 3. How many are in each location after one time period?
- The total number of individuals in the migration process is 256. After a long time, how many are in each location?
- Answer
-
- Multiply the given matrix by the initial state vector given by \left[\begin{array}{c}90\\81\\85\end{array}\right]. After one time period there are 89 people in location 1, 106 in location 2, and 61 in location 3.
- Solve the system given by (I − A)X_s = 0 where A is the migration matrix and X_s=\left[\begin{array}{c}x_{1s} \\ x_{2s} \\ x_{3s}\end{array}\right] is the steady state vector. The solution to this system is given by \begin{aligned}x_{1s}&=\frac{8}{5}x_{3s} \\ x_{2s}&=\frac{63}{25}x_{3s}\end{aligned} Letting x_{3s} = t and using the fact that there are a total of 256 individuals, we must solve \frac{8}{5}t+\frac{63}{25}t+t=256\nonumber We find that t = 50. Therefore after a long time, there are 80 people in location 1,\: 126 in location 2, and 50 in location 3.
Exercise \PageIndex{37}
The following is a Markov (migration) matrix for three locations \left[\begin{array}{ccc}\frac{1}{5}&\frac{1}{5}&\frac{2}{5} \\ \frac{2}{5}&\frac{2}{5}&\frac{1}{5} \\ \frac{2}{5}&\frac{2}{5}&\frac{2}{5}\end{array}\right]\nonumber
- Initially, there are 130 individuals in location 1,\: 300 in location 2, and 70 in location 3. How many are in each location after two time periods?
- The total number of individuals in the migration process is 500. After a long time, how many are in each location?
Exercise \PageIndex{38}
The following is a Markov (migration) matrix for three locations \left[\begin{array}{ccc}\frac{3}{10}&\frac{3}{8}&\frac{1}{3} \\ \frac{1}{10}&\frac{3}{8}&\frac{1}{3} \\ \frac{3}{5}&\frac{1}{4}&\frac{1}{3}\end{array}\right]\nonumber The total number of individuals in the migration process is 480. After a long time, how many are in each location?
- Answer
-
We solve (I −A)X_s = 0 to find the steady state vector X_s=\left[\begin{array}{c}x_{1s} \\ x_{2s} \\ x_{3s}\end{array}\right]. The solution to the system is given by \begin{aligned}x_{1s}&=\frac{5}{6}x_{3s} \\ x_{2s}&=\frac{2}{3}x_{3s}\end{aligned} Letting x_{3s} = t and using the fact that there are a total of 480 individuals, we must solve \frac{5}{6}t+\frac{2}{3}t+t=480\nonumber We find that t = 192. Therefore after a long time, there are 160 people in location 1,\: 128 in location 2, and 192 in location 3.
Exercise \PageIndex{39}
The following is a Markov (migration) matrix for three locations \left[\begin{array}{ccc}\frac{3}{10}&\frac{1}{3}&\frac{1}{5} \\ \frac{3}{10}&\frac{1}{3}&\frac{7}{10} \\ \frac{2}{5}&\frac{1}{3}&\frac{1}{10}\end{array}\right]\nonumber The total number of individuals in the migration process is 1155. After a long time, how many are in each location?
Exercise \PageIndex{40}
The following is a Markov (migration) matrix for three locations \left[\begin{array}{ccc}\frac{2}{5}&\frac{1}{10}&\frac{1}{8} \\ \frac{3}{10}&\frac{2}{5}&\frac{5}{8} \\ \frac{3}{10}&\frac{1}{2}&\frac{1}{4}\end{array}\right]\nonumber The total number of individuals in the migration process is 704. After a long time, how many are in each location?
Exercise \PageIndex{41}
A person sets off on a random walk with three possible locations. The Markov matrix of probabilities A = [a_{ij}] is given by \left[\begin{array}{ccc}0.1&0.3&0.7 \\ 0.1&0.3&0.2\\0.8&0.4&0.1\end{array}\right]\nonumber If the walker starts in location 2, what is the probability of ending back in location 2 at time n = 3?
- Answer
-
X_3=\left[\begin{array}{c}0.38\\0.18\\0.44\end{array}\right]\nonumber Therefore the probability of ending up back in location 2 is 0.18.
Exercise \PageIndex{42}
A person sets off on a random walk with three possible locations. The Markov matrix of probabilities A = [a_{ij}] is given by \left[\begin{array}{ccc}0.5&0.1&0.6\\0.2&0.9&0.2\\0.3&0&0.2\end{array}\right]\nonumber It is unknown where the walker starts, but the probability of starting in each location is given by X_0=\left[\begin{array}{r}0.2\\0.25\\0.55\end{array}\right]\nonumber What is the probability of the walker being in location 1 at time n = 2?
- Answer
-
X_2=\left[\begin{array}{r}0.367\\0.4625\\0.1705\end{array}\right]\nonumber Therefore the probability of ending up in location 1 is 0.367.
Exercise \PageIndex{43}
You own a trailer rental company in a large city and you have four locations, one in the South East, one in the North East, one in the North West, and one in the South West. Denote these locations by SE, NE, NW, and SW respectively. Suppose that the following table is observed to take place.
SE | NE | NW | SW | |
---|---|---|---|---|
SE | \frac{1}{3} | \frac{1}{10} | \frac{1}{10} | \frac{1}{5} |
NE | \frac{1}{3} | \frac{7}{10} | \frac{1}{5} | \frac{1}{10} |
NW | \frac{2}{9} | \frac{1}{10} | \frac{3}{5} | \frac{1}{5} |
SW | \frac{1}{9} | \frac{1}{10} | \frac{1}{10} | \frac{1}{2} |
In this table, the probability that a trailer starting at NE ends in NW is 1/10, the probability that a trailer starting at SW ends in NW is 1/5, and so forth. Approximately how many will you have in each location after a long time if the total number of trailers is 413?
- Answer
-
The migration matrix is A=\left[\begin{array}{cccc}\frac{1}{3}&\frac{1}{10}&\frac{1}{10}&\frac{1}{5} \\ \frac{1}{3}&\frac{7}{10}&\frac{1}{5}&\frac{1}{10} \\ \frac{2}{9}&\frac{1}{10}&\frac{3}{5}&\frac{1}{5} \\ \frac{1}{9}&\frac{1}{10}&\frac{1}{10}&\frac{1}{2}\end{array}\right]\nonumber To find the number of trailers in each location after a long time we solve system (I − A)X_s = 0 for the steady state vector X_s=\left[\begin{array}{c}x_{1s} \\ x_{2s} \\ x_{3s} \\ x_{4s}\end{array}\right]. The solution to the system is \begin{aligned} x_{1s}&=\frac{9}{10}x_{4s} \\ x_{2s}&=\frac{12}{5}x_{4s} \\ x_{3s}&=\frac{8}{5}x_{4s}\end{aligned} Letting x_{4s} = t and using the fact that there are a total of 413 trailers we must solve \frac{9}{10}t+\frac{12}{5}t+\frac{8}{5}t+t=413\nonumber We find that t = 70. Therefore after a long time, there are 63 trailers in the SE, 168 in the NE, 112 in the NW and 70 in the SW.
Exercise \PageIndex{44}
You own a trailer rental company in a large city and you have four locations, one in the South East, one in the North East, one in the North West, and one in the South West. Denote these locations by SE, NE, NW, and SW respectively. Suppose that the following table is observed to take place.
SE | NE | NW | SW | |
---|---|---|---|---|
SE | \frac{1}{7} | \frac{1}{4} | \frac{1}{10} | \frac{1}{5} |
NE | \frac{2}{7} | \frac{1}{4} | \frac{1}{5} | \frac{1}{10} |
NW | \frac{1}{7} | \frac{1}{4} | \frac{3}{5} | \frac{1}{5} |
SW | \frac{3}{7} | \frac{1}{4} | \frac{1}{10} | \frac{1}{2} |
In this table, the probability that a trailer starting at NE ends in NW is 1/10, the probability that a trailer starting at SW ends in NW is 1/5, and so forth. Approximately how many will you have in each location after a long time if the total number of trailers is 1469.
Exercise \PageIndex{45}
The following table describes the transition probabilities between the states rainy, partly cloudy and sunny. The symbol p.c. indicates partly cloudy. Thus if it starts off p.c. it ends up sunny the next day with probability \frac{1}{5}. If it starts off sunny, it ends up sunny the next day with probability \frac{2}{5} and so forth.
rains | sunny | p.c. | |
---|---|---|---|
rains | \frac{1}{5} | \frac{1}{5} | \frac{1}{3} |
sunny | \frac{1}{5} | \frac{2}{5} | \frac{1}{3} |
p.c. | \frac{3}{5} | \frac{2}{5} | \frac{1}{3} |
Given this information, what are the probabilities that a given day is rainy, sunny, or partly cloudy?
Exercise \PageIndex{46}
The following table describes the transition probabilities between the states rainy, partly cloudy and sunny. The symbol p.c. indicates partly cloudy. Thus if it starts off p.c. it ends up sunny the next day with probability \frac{1}{10}. If it starts off sunny, it ends up sunny the next day with probability \frac{2}{5} and so forth.
rains | sunny | p.c. | |
---|---|---|---|
rains | \frac{1}{5} | \frac{1}{5} | \frac{1}{3} |
sunny | \frac{1}{10} | \frac{2}{5} | \frac{4}{9} |
p.c. | \frac{7}{10} | \frac{2}{5} | \frac{2}{9} |
Given this information, what are the probabilities that a given day is rainy, sunny, or partly cloudy?
Exercise \PageIndex{47}
You own a trailer rental company in a large city and you have four locations, one in the South East, one in the North East, one in the North West, and one in the South West. Denote these locations by SE, NE, NW, and SW respectively. Suppose that the following table is observed to take place.
SE | NE | NW | SW | |
---|---|---|---|---|
SE | \frac{5}{11} | \frac{1}{10} | \frac{1}{10} | \frac{1}{5} |
NE | \frac{1}{11} | \frac{7}{10} | \frac{1}{5} | \frac{1}{10} |
NW | \frac{2}{11} | \frac{1}{10} | \frac{3}{5} | \frac{1}{5} |
SW | \frac{3}{11} | \frac{1}{10} | \frac{1}{10} | \frac{1}{2} |
In this table, the probability that a trailer starting at NE ends in NW is 1/10, the probability that a trailer starting at SW ends in NW is 1/5, and so forth. Approximately how many will you have in each location after a long time if the total number of trailers is 407?
Exercise \PageIndex{48}
The University of Poohbah offers three degree programs, scouting education (SE), dance appreciation (DA), and engineering (E). It has been determined that the probabilities of transferring from one program to another are as in the following table.
SE | DA | E | |
---|---|---|---|
SE | .8 | .1 | .3 |
DA | .1 | .7 | .5 |
E | .1 | .2 | .2 |
where the number indicates the probability of transferring from the top program to the program on the left. Thus the probability of going from DA to E is .2. Find the probability that a student is enrolled in the various programs.
Exercise \PageIndex{49}
In the city of Nabal, there are three political persuasions, republicans (R), democrats (D), and neither one (N). The following table shows the transition probabilities between the political parties, the top row being the initial political party and the side row being the political affiliation the following year.
R | D | N | |
---|---|---|---|
R | \frac{1}{5} | \frac{1}{6} | \frac{2}{7} |
D | \frac{1}{5} | \frac{1}{3} | \frac{4}{7} |
N | \frac{3}{5} | \frac{1}{2} | \frac{1}{7} |
Find the probabilities that a person will be identified with the various political persuasions. Which party will end up being most important?
Exercise \PageIndex{50}
The following table describes the transition probabilities between the states rainy, partly cloudy and sunny. The symbol p.c. indicates partly cloudy. Thus if it starts off p.c. it ends up sunny the next day with probability \frac{1}{5}. If it starts off sunny, it ends up sunny the next day with probability \frac{2}{7} and so forth.
rains | sunny | p.c. | |
---|---|---|---|
rains | \frac{1}{5} | \frac{2}{7} | \frac{5}{9} |
sunny | \frac{1}{5} | \frac{2}{7} | \frac{1}{3} |
p.c. | \frac{3}{5} | \frac{3}{7} | \frac{1}{9} |
Given this information, what are the probabilities that a given day is rainy, sunny, or partly cloudy?
Exercise \PageIndex{51}
Find the solution to the initial value problem \begin{aligned}\left[\begin{array}{c}x\\y\end{array}\right]'&=\left[\begin{array}{rr}0&-1\\6&5\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]\\ \left[\begin{array}{c}x(0) \\ y(0)\end{array}\right]&=\left[\begin{array}{c}2\\2\end{array}\right]\end{aligned} Hint: form the matrix exponential e^{At} and then the solution is e^{At}C where C is the initial vector,
- Answer
-
The solution is e^{At}C=\left[\begin{array}{c}8e^{2t}-6e^{3t} \\ 18e^{3t}-16e^{2t}\end{array}\right]\nonumber
Exercise \PageIndex{52}
Find the solution to the initial value problem \begin{aligned}\left[\begin{array}{c}x\\y\end{array}\right]'&=\left[\begin{array}{rr}-4&-3\\6&5\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]\\ \left[\begin{array}{c}x(0) \\ y(0)\end{array}\right]&=\left[\begin{array}{c}3\\4\end{array}\right]\end{aligned} Hint: form the matrix exponential e^{At} and then the solution is e^{At}C where C is the initial vector.
Exercise \PageIndex{53}
Find the solution to the initial value problem \begin{aligned}\left[\begin{array}{c}x\\y\end{array}\right]'&=\left[\begin{array}{rr}-1&2\\-4&5\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]\\ \left[\begin{array}{c}x(0) \\ y(0)\end{array}\right]&=\left[\begin{array}{c}2\\2\end{array}\right]\end{aligned} Hint: form the matrix exponential e^{At} and then the solution is e^{At}C where C is the initial vector.
Exercise \PageIndex{54}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. A=\left[\begin{array}{rrr}11&-1&-4 \\ -1&11&-4\\-4&-4&14\end{array}\right]\nonumber Hint: Two eigenvalues are 12 and 18.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\frac{1}{\sqrt{3}}\left[\begin{array}{c}1\\1\\1\end{array}\right]\right\}\leftrightarrow 6,\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1\\1\\0\end{array}\right]\right\}\leftrightarrow 12,\left\{\frac{1}{\sqrt{6}}\left[\begin{array}{r}-1\\-1\\2\end{array}\right]\right\}\leftrightarrow 18\nonumber
Exercise \PageIndex{55}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. A=\left[\begin{array}{rrr}4&1&-2\\1&4&-2\\-2&-2&7\end{array}\right]\nonumber Hint: One eigenvalue is 3.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1\\1\\0\end{array}\right],\frac{1}{\sqrt{3}}\left[\begin{array}{c}1\\1\\1\end{array}\right]\right\}\leftrightarrow 3,\left\{\frac{1}{\sqrt{6}}\left[\begin{array}{r}-1\\-1\\2\end{array}\right]\right\}\leftrightarrow 9\nonumber
Exercise \PageIndex{56}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding an orthogonal matrix U and a diagonal matrix D such that U^TAU = D. A=\left[\begin{array}{rrr}-1&1&1\\1&-1&1\\1&1&-1\end{array}\right]\nonumber Hint: One eigenvalue is -2.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}\frac{1}{3}\sqrt{3} \\ \frac{1}{3}\sqrt{3} \\ \frac{1}{3}\sqrt{3}\end{array}\right]\right\}\leftrightarrow 1,\left\{\left[\begin{array}{c}-\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} \\ 0\end{array}\right],\left[\begin{array}{c}-\frac{1}{6}\sqrt{6} \\ -\frac{1}{6}\sqrt{6} \\ \frac{1}{3}\sqrt{2}\sqrt{3}\end{array}\right]\right\}\leftrightarrow -2\nonumber \left[\begin{array}{c}\sqrt{3}/3&-\sqrt{2}/2&-\sqrt{6}/6 \\ \sqrt{3}/3&\sqrt{2}/2&-\sqrt{6}/6 \\ \sqrt{3}/3&0&\frac{1}{3}\sqrt{2}\sqrt{3}\end{array}\right]^T\left[\begin{array}{rrr}-1&1&1\\1&-1&1\\1&1&-1\end{array}\right]\nonumber \left[\begin{array}{c}\sqrt{3}/3&-\sqrt{2}/2&-\sqrt{6}/6 \\ \sqrt{3}/3&\sqrt{2}/2&-\sqrt{6}/6 \\ \sqrt{3}/3&0&\frac{1}{3}\sqrt{2}\sqrt{3}\end{array}\right]\nonumber =\left[\begin{array}{rrr}1&0&0\\0&-2&0\\0&0&-2\end{array}\right]\nonumber
Exercise \PageIndex{57}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding an orthogonal matrix U and a diagonal matrix D such that U^TAU = D. A=\left[\begin{array}{rrr}17&-7&-4 \\ -7&17&-4 \\ -4&-4&14\end{array}\right]\nonumber Hint: Two eigenvalues are 18 and 24.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}\frac{1}{3}\sqrt{3} \\ \frac{1}{3}\sqrt{3} \\ \frac{1}{3}\sqrt{3}\end{array}\right]\right\}\leftrightarrow 6,\left\{\left[\begin{array}{c}-\frac{1}{6}\sqrt{6} \\ -\frac{1}{6}\sqrt{6} \\ \frac{1}{3}\sqrt{2}\sqrt{3}\end{array}\right]\right\}\leftrightarrow 18,\left\{\left[\begin{array}{c}-\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} \\ 0\end{array}\right]\right\}\leftrightarrow 24\nonumber The matrix U has these as its columns.
Exercise \PageIndex{58}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding an orthogonal matrix U and a diagonal matrix D such that U^TAU = D. A=\left[\begin{array}{rrr}13&1&4\\1&13&4\\4&4&10\end{array}\right]\nonumber Hint: Two eigenvalues are 12 and 18.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}-\frac{1}{6}\sqrt{6} \\ -\frac{1}{6}\sqrt{6} \\ \frac{1}{3}\sqrt{2}\sqrt{3}\end{array}\right]\right\}\leftrightarrow 6,\left\{\left[\begin{array}{c}-\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} \\ 0\end{array}\right]\right\}\leftrightarrow 12, \left\{\left[\begin{array}{c}\frac{1}{3}\sqrt{3} \\ \frac{1}{3}\sqrt{3} \\ \frac{1}{3}\sqrt{3}\end{array}\right]\right\}\leftrightarrow 18.\nonumber The matrix U has these as its columns.
Exercise \PageIndex{59}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding an orthogonal matrix U and a diagonal matrix D such that U^TAU = D. A=\left[\begin{array}{ccc}-\frac{5}{3}&\frac{1}{15}\sqrt{6}\sqrt{5}&\frac{8}{15}\sqrt{5} \\ \frac{1}{15}\sqrt{6}\sqrt{5}&-\frac{14}{5}&-\frac{1}{15}\sqrt{6} \\ \frac{8}{15}\sqrt{5}&-\frac{1}{15}\sqrt{6}&\frac{7}{15} \end{array}\right]\nonumber Hint: The eigenvalues are -3,-2,1.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}\frac{1}{6}\sqrt{6} \\ 0\\ \frac{1}{6}\sqrt{5}\sqrt{6}\end{array}\right]\right\}\leftrightarrow 1,\left\{\left[\begin{array}{c}-\frac{1}{3}\sqrt{2}\sqrt{3} \\ -\frac{1}{5}\sqrt{5} \\ \frac{1}{15}\sqrt{2}\sqrt{15}\end{array}\right]\right\} -2,\left\{\left[\begin{array}{c}-\frac{1}{6}\sqrt{6} \\ \frac{2}{5}\sqrt{5} \\ \frac{1}{30}\sqrt{30}\end{array}\right]\right\}\leftrightarrow -3\nonumber These vectors are the columns of U.
Exercise \PageIndex{60}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding an orthogonal matrix U and a diagonal matrix D such that U^TAU = D. A=\left[\begin{array}{ccc}3&0&0 \\ 0&\frac{3}{2}&\frac{1}{2} \\ 0&\frac{1}{2}&\frac{3}{2}\end{array}\right]\nonumber
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}0\\-\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2}\end{array}\right]\right\}\leftrightarrow 1,\left\{\left[\begin{array}{c}0\\ \frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2}\end{array}\right]\right\}\leftrightarrow 2,\left\{\left[\begin{array}{c}1\\0\\0\end{array}\right]\right\}\leftrightarrow 3.\nonumber These vectors are the columns of the matrix U.
Exercise \PageIndex{61}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding an orthogonal matrix U and a diagonal matrix D such that U^TAU = D. A=\left[\begin{array}{ccc}2&0&0\\0&5&1\\0&1&5\end{array}\right]\nonumber
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}1\\0\\0\end{array}\right]\right\}\leftrightarrow 2,\left\{\left[\begin{array}{c}0\\ -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2}\end{array}\right]\right\}\leftrightarrow 4, \left\{\left[\begin{array}{c}0\\ \frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2}\end{array}\right]\right\}\leftrightarrow 6.\nonumber These vectors are the columns of U.
Exercise \PageIndex{62}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding an orthogonal matrix U and a diagonal matrix D such that U^TAU = D. A=\left[\begin{array}{ccc}\frac{4}{3}&\frac{1}{3}\sqrt{3}\sqrt{2}&\frac{1}{3}\sqrt{2} \\ \frac{1}{3}\sqrt{3}\sqrt{2}&1&-\frac{1}{3}\sqrt{3} \\ \frac{1}{3}\sqrt{2}&-\frac{1}{3}\sqrt{3}&\frac{5}{3}\end{array}\right]\nonumber Hint: The eigenvalues are 0,2,2 where 2 is listed twice because it is a root of multiplicity 2.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}-\frac{1}{5}\sqrt{2}\sqrt{5} \\ \frac{1}{5}\sqrt{3}\sqrt{5} \\ \frac{1}{5}\sqrt{5}\end{array}\right]\right\}\leftrightarrow 0,\left\{\left[\begin{array}{c}\frac{1}{3}\sqrt{3} \\ 0\\ \frac{1}{3}\sqrt{2}\sqrt{3}\end{array}\right],\left[\begin{array}{c}\frac{1}{5}\sqrt{2}\sqrt{5} \\ \frac{1}{5}\sqrt{3}\sqrt{5} \\ -\frac{1}{5}\sqrt{5}\end{array}\right]\right\}\leftrightarrow 2.\nonumber The columns are these vectors.
Exercise \PageIndex{63}
Find the eigenvalues and an orthonormal basis of eigenvectors for A. Diagonalize A by finding an orthogonal matrix U and a diagonal matrix D such that U^TAU = D. A=\left[\begin{array}{ccc}1&\frac{1}{6}\sqrt{3}\sqrt{2}&\frac{1}{6}\sqrt{3}\sqrt{6} \\ \frac{1}{6}\sqrt{3}\sqrt{2}&\frac{3}{2}&\frac{1}{12}\sqrt{2}\sqrt{6} \\ \frac{1}{6}\sqrt{3}\sqrt{6}&\frac{1}{12}\sqrt{2}\sqrt{6}&\frac{1}{2}\end{array}\right]\nonumber Hint: The eigenvalues are 2,1,0.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}-\frac{1}{3}\sqrt{3} \\ 0\\ \frac{1}{3}\sqrt{2}\sqrt{3}\end{array}\right]\right\}\leftrightarrow 0,\left\{\left[\begin{array}{c}\frac{1}{3}\sqrt{3} \\ -\frac{1}{2}\sqrt{2} \\ \frac{1}{6}\sqrt{6}\end{array}\right]\right\}\leftrightarrow 1,\left\{\left[\begin{array}{c}\frac{1}{3}\sqrt{3} \\ \frac{1}{2}\sqrt{2} \\ \frac{1}{6}\sqrt{6}\end{array}\right]\right\}\leftrightarrow 2.\nonumber The columns are these vectors.
Exercise \PageIndex{64}
Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix A=\left[\begin{array}{ccc}\frac{1}{3}&\frac{1}{6}\sqrt{3}\sqrt{2}&-\frac{7}{18}\sqrt{3}\sqrt{6} \\ \frac{1}{6}\sqrt{3}\sqrt{2}&\frac{3}{2}&-\frac{1}{12}\sqrt{2}\sqrt{6} \\ -\frac{7}{18}\sqrt{3}\sqrt{6}&-\frac{1}{12}\sqrt{2}\sqrt{6}&-\frac{5}{6}\end{array}\right]\nonumber Hint: The eigenvalues are 1,2,-2.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}-\frac{1}{3}\sqrt{3} \\ \frac{1}{2}\sqrt{2} \\ \frac{1}{6}\sqrt{6}\end{array}\right]\right\}\leftrightarrow 1, \left\{\left[\begin{array}{c}\frac{1}{3}\sqrt{3} \\ 0\\ \frac{1}{3}\sqrt{2}\sqrt{3}\end{array}\right]\right\}\leftrightarrow -2, \left\{\left[\begin{array}{c}\frac{1}{3}\sqrt{3} \\ \frac{1}{2}\sqrt{2} \\ -\frac{1}{6}\sqrt{6}\end{array}\right]\right\}\leftrightarrow 2.\nonumber Then the columns of U are these vectors.
Exercise \PageIndex{65}
Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix A=\left[\begin{array}{ccc}-\frac{1}{2}&-\frac{1}{5}\sqrt{6}\sqrt{5}&\frac{1}{10}\sqrt{5} \\ -\frac{1}{5}\sqrt{6}\sqrt{5}&\frac{7}{5}&-\frac{1}{5}\sqrt{6} \\ \frac{1}{10}&\sqrt{5}&-\frac{1}{5}\sqrt{6}&-\frac{9}{10}\end{array}\right]\nonumber Hint: The eigenvalues are -1,2,-1 where -1 is listed twice because it has multiplicity 2 as a zero of the characteristic equation.
- Answer
-
The eigenvectors and eigenvalues are: \left\{\left[\begin{array}{c}-\frac{1}{6}\sqrt{6} \\ 0 \\ \frac{1}{6}\sqrt{5}\sqrt{6}\end{array}\right],\left[\begin{array}{c}\frac{1}{3}\sqrt{2}\sqrt{3} \\ \frac{1}{5}\sqrt{5} \\ \frac{1}{15}\sqrt{2}\sqrt{15}\end{array}\right]\right\}\leftrightarrow -1,\left\{\left[\begin{array}{c}\frac{1}{6}\sqrt{6} \\ -\frac{2}{5}\sqrt{5} \\ \frac{1}{30}\sqrt{30}\end{array}\right]\right\}\leftrightarrow 2.\nonumber The columns of U are these vectors. \left[\begin{array}{ccc}-\frac{1}{6}\sqrt{6}&\frac{1}{3}\sqrt{2}\sqrt{3}&\frac{1}{6}\sqrt{6} \\ 0&\frac{1}{5}\sqrt{5}&-\frac{2}{5}\sqrt{5} \\ \frac{1}{6}\sqrt{5}\sqrt{6} &\frac{1}{15}\sqrt{2}\sqrt{15}&\frac{1}{30}\sqrt{30}\end{array}\right]^T\left[\begin{array}{ccc}-\frac{1}{2}&-\frac{1}{5}\sqrt{6}\sqrt{5}&\frac{1}{10}\sqrt{5} \\ -\frac{1}{5}\sqrt{6}\sqrt{5}&\frac{7}{5}&-\frac{1}{5}\sqrt{6} \\ \frac{1}{10}\sqrt{5}&-\frac{1}{5}\sqrt{6}&-\frac{9}{10}\end{array}\right].\nonumber \left[\begin{array}{ccc}-\frac{1}{6}\sqrt{6}&\frac{1}{3}\sqrt{2}\sqrt{3}&\frac{1}{6}\sqrt{6} \\ 0&\frac{1}{5}\sqrt{5}&-\frac{2}{5}\sqrt{5} \\ \frac{1}{6}\sqrt{5}\sqrt{6}&\frac{1}{15}\sqrt{2}\sqrt{15}&\frac{1}{30}\sqrt{30}\end{array}\right]=\left[\begin{array}{rrr}-1&0&0\\0&-1&0\\0&0&2\end{array}\right]\nonumber
Exercise \PageIndex{66}
Explain why a matrix A is symmetric if and only if there exists an orthogonal matrix U such that A = U^TDU for D a diagonal matrix.
- Answer
-
If A is given by the formula, then A^T=U^TD^TU=U^TDU=A\nonumber Next suppose A = A^T. Then by the theorems on symmetric matrices, there exists an orthogonal matrix U such that UAU^T=D\nonumber for D diagonal. Hence A=U^TDU\nonumber
Exercise \PageIndex{67}
Show that if A is a real symmetric matrix and λ and µ are two different eigenvalues, then if X is an eigenvector for λ and Y is an eigenvector for µ, then X •Y = 0. Also all eigenvalues are real. Supply reasons for each step in the following argument. First \lambda X^T\overline{X}=(AX)^T\overline{X}=X^TA\overline{X}=X^T\overline{AX}=X^T\overline{\lambda X}=\overline{\lambda}X^T\overline{X}\nonumber and so \lambda=\overline{\lambda}. This shows that all eigenvalues are real. It follows all the eigenvectors are real. Why? Now let X,\: Y,\:µ and λ be given as above. \lambda (X\bullet Y)=\lambda X\bullet Y=AX\bullet Y=X\bullet AY=X\bullet\mu Y=\mu (X\bullet Y)=\mu (X\bullet Y)\nonumber and so (\lambda -\mu )X\bullet Y=0\nonumber Why does it follow that X\bullet Y=0?
- Answer
-
Since \lambda\neq\mu, it follows X\bullet Y=0.
Exercise \PageIndex{68}
Find the Cholesky factorization for the matrix \left[\begin{array}{ccc}1&2&0 \\ 2&6&4\\0&4&10\end{array}\right]\nonumber
Exercise \PageIndex{69}
Find the Cholesky factorization for the matrix \left[\begin{array}{rrr}4&8&0\\8&17&2\\0&2&13\end{array}\right]\nonumber
Exercise \PageIndex{70}
Find the Cholesky factorization for the matrix \left[\begin{array}{rrr}4&8&0\\8&20&8\\0&8&20\end{array}\right]\nonumber
Exercise \PageIndex{71}
Find the Cholesky factorization for the matrix \left[\begin{array}{rrr}1&2&1\\2&8&10\\1&10&18\end{array}\right]\nonumber
Exercise \PageIndex{72}
Find the Cholesky factorization for the matrix \left[\begin{array}{rrr}1&2&1\\2&8&10\\1&10&26\end{array}\right]\nonumber
Exercise \PageIndex{73}
Suppose you have a lower triangular matrix L and it is invertible. Show that LL^T must be positive definite.
Exercise \PageIndex{74}
Using the Gram Schmidt process or the QR factorization, find an orthonormal basis for the following span: span\left\{\left[\begin{array}{c}1\\2\\1\end{array}\right],\left[\begin{array}{r}2\\-1\\3\end{array}\right],\left[\begin{array}{c}1\\0\\0\end{array}\right]\right\}\nonumber
- Answer
-
Using the QR factorization, we have: \left[\begin{array}{rrr}1&2&1\\2&-1&0\\1&3&0\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{6}\sqrt{6}&\frac{3}{10}\sqrt{2}&\frac{7}{15}\sqrt{3} \\ \frac{1}{3}\sqrt{6}&-\frac{2}{5}\sqrt{2}&-\frac{1}{15}\sqrt{3} \\ \frac{1}{6}\sqrt{6}&\frac{1}{2}\sqrt{2}&-\frac{1}{3}\sqrt{3}\end{array}\right]\left[\begin{array}{ccc}\sqrt{6}&\frac{1}{2}\sqrt{6}&\frac{1}{6}\sqrt{6} \\ 0&\frac{5}{2}\sqrt{2}&\frac{3}{10}\sqrt{2} \\ 0&0&\frac{7}{15}\sqrt{3}\end{array}\right]\nonumber A solution is then \left[\begin{array}{c}\frac{1}{6}\sqrt{6} \\ \frac{1}{3}\sqrt{6} \\ \frac{1}{6}\sqrt{6}\end{array}\right],\left[\begin{array}{c}\frac{3}{10}\sqrt{2} \\ -\frac{2}{5}\sqrt{2} \\ \frac{1}{2}\sqrt{2}\end{array}\right],\left[\begin{array}{c}\frac{7}{15}\sqrt{3} \\ -\frac{1}{15}\sqrt{3} \\ -\frac{1}{3}\sqrt{3}\end{array}\right]\nonumber
Exercise \PageIndex{75}
Using the Gram Schmidt process or the QR factorization, find an orthonormal basis for the following span: span\left\{\left[\begin{array}{c}1\\2\\1\\0\end{array}\right],\left[\begin{array}{r}2\\-1\\3\\1\end{array}\right],\left[\begin{array}{c}1\\0\\0\\1\end{array}\right]\right\}\nonumber
- Answer
-
\left[\begin{array}{rrr}1&2&1\\2&-1&0\\1&3&0\\0&1&1\end{array}\right]=\left[\begin{array}{cccc}\frac{1}{6}\sqrt{6}&\frac{1}{6}\sqrt{2}\sqrt{3}&\frac{5}{111}\sqrt{3}\sqrt{37}&\frac{7}{111}\sqrt{111} \\ \frac{1}{3}\sqrt{6}&-\frac{2}{9}\sqrt{2}\sqrt{3}&\frac{1}{333}\sqrt{3}\sqrt{37}&-\frac{2}{111}\sqrt{111} \\ \frac{1}{6}\sqrt{6}&\frac{5}{18}\sqrt{2}\sqrt{3}&-\frac{17}{333}\sqrt{3}\sqrt{37}&-\frac{1}{37}\sqrt{111} \\ 0&\frac{1}{9}\sqrt{2}\sqrt{3}&\frac{22}{333}\sqrt{3}\sqrt{37}&-\frac{7}{111}\sqrt{111}\end{array}\right]\nonumber \left[\begin{array}{ccc}\sqrt{6}&\frac{1}{2}\sqrt{6}&\frac{1}{6}\sqrt{6} \\ 0&\frac{3}{2}\sqrt{2}\sqrt{3}&\frac{5}{18}\sqrt{2}\sqrt{3} \\ 0&0&\frac{1}{9}\sqrt{3}\sqrt{37} \\ 0&0&0\end{array}\right]\nonumber Then a solution is \left[\begin{array}{c}\frac{1}{6}\sqrt{6} \\ \frac{1}{3}\sqrt{6} \\ \frac{1}{6}\sqrt{6}&0\end{array}\right],\left[\begin{array}{c}\frac{1}{6}\sqrt{2}\sqrt{3} \\ -\frac{2}{9}\sqrt{2}\sqrt{3} \\ \frac{5}{18}\sqrt{2}\sqrt{3} \\ \frac{1}{9}\sqrt{2}\sqrt{3}\end{array}\right],\left[\begin{array}{c}\frac{5}{111}\sqrt{3}\sqrt{37} \\ \frac{1}{333}\sqrt{3}\sqrt{37} \\ -\frac{17}{333}\sqrt{3}\sqrt{37} \\ \frac{22}{333}\sqrt{3}\sqrt{37}\end{array}\right]\nonumber
Exercise \PageIndex{76}
- \left[\begin{array}{ccc}1&2&3\\0&3&4\\0&0&1\end{array}\right]
- \left[\begin{array}{cc}2&1\\2&1\end{array}\right]
- \left[\begin{array}{rr}1&2\\-1&2\end{array}\right]
- \left[\begin{array}{cc}1&1\\2&3\end{array}\right]
- \left[\begin{array}{rrr}\sqrt{11}&1&3\sqrt{6} \\ \sqrt{11}&7&-\sqrt{6} \\ 2\sqrt{11}&-4&-\sqrt{6}\end{array}\right] Hint: Notice that the columns are orthogonal.
Exercise \PageIndex{77}
Using a computer algebra system, find a QR factorization for the following matrices.
- \left[\begin{array}{rrr}1&1&2\\3&-2&3\\2&1&1\end{array}\right]
- \left[\begin{array}{rrrr}1&2&1&3\\4&5&-4&3\\2&1&2&1\end{array}\right]
- \left[\begin{array}{rr}1&2\\3&2\\1&-4\end{array}\right] Find the thin QR factorization of this one.
Exercise \PageIndex{78}
A quadratic form in three variables is an expression of the form a_1x^2 + a_2y^2 + a_3z^2 + a_4xy+a_5xz+a_6yz. Show that every such quadratic form may be written as \left[\begin{array}{ccc}x&y&z\end{array}\right]A\left[\begin{array}{c}x\\y\\z\end{array}\right]\nonumber where A is a symmetric matrix.
- Answer
-
\left[\begin{array}{ccc}x&y&z\end{array}\right]\left[\begin{array}{ccc}a_1&a_4/2&a_5/2 \\ a_4/2&a_2&a_6/2 \\ a_5/2&a_6/2&a_3\end{array}\right]\left[\begin{array}{c}x\\y\\z\end{array}\right]\nonumber
Exercise \PageIndex{79}
Given a quadratic form in three variables, x, y, and z, show there exists an orthogonal matrix U and variables x′ , y ′ ,z ′ such that \left[\begin{array}{c}x\\y\\z\end{array}\right]=U\left[\begin{array}{c}x'\\y'\\z'\end{array}\right]\nonumber with the property that in terms of the new varaibles, the quadratic form is \lambda_1(x')^2+\lambda_2(y')^2+\lambda_3(z')^2\nonumber where the numbers, \lambda_1, \lambda_2, and \lambda_3 are the eigenvalues of the matrix A in Exercise \PageIndex{78}.
- Answer
-
The quadratic form may be written as \vec{x}^TA\vec{x}\nonumber where A = A^T. By the theorem about diagonalizing a symmetric matrix, there exists an orthogonal matrix U such that U^TAU=D,\:A=UDU^T\nonumber Then the quadratic form is \vec{x}^TUDU^T\vec{x}=(U^T\vec{x})^TD(U^T\vec{x})\nonumber where D is a diagonal matrix having the real eigenvalues of A down the main diagonal. Now simply let \vec{x}'=U^T\vec{x}\nonumber
Exercise \PageIndex{80}
Consider the quadratic form q given by q = 3x_1^2 −12x_1x_2 −2x_2^2.
- Write q in the form \vec{x}^TA\vec{x} for an appropriate symmetric matrix A.
- Use a change of variables to rewrite q to eliminate the x_1x_2 term.
Exercise \PageIndex{81}
Consider the quadratic form q given by q = −2x_1^2 +2x_1x_2 −2x_2^2.
- Write q in the form \vec{x}^TA\vec{x} for an appropriate symmetric matrix A.
- Use a change of variables to rewrite q to eliminate the x_1x_2 term.
Exercise \PageIndex{82}
Consider the quadratic form q given by q = 7x_1^2 +6x_1x_2 −x_2^2.
- Write q in the form \vec{x}^TA\vec{x} for an appropriate symmetric matrix A.
- Use a change of variables to rewrite q to eliminate the x_1x_2 term.