Skip to main content
Mathematics LibreTexts

3.5: Chapter 3 Review

  • Page ID
    49622
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Systems of Equations

    For the exercises 1-4, determine whether the given ordered pair is a solution to the system of equations.

    1) \(\begin{align*} -3x-5y &= 13\\ -x+4y &= 10 \end{align*}\; \text{ and } (-6,1)\)

    Answer

    Yes

    2) \(\begin{align*} 3x+7y &= 1\\ 2x+4y &= 0 \end{align*}\; \text{ and } (2,3)\)

    3) \(\begin{align*} 6x-y+3z &= 6\\ 3x+5y+2z &= 0\\ x+y &= 0 \end{align*}\; \; \text{ and }\; (3,-3,-5)\)

    Answer

    No

    4) \(\begin{align*} 6x-7y+z &= 2\\ -x-y+3z &= 4\\ 2x+y-z &= 1 \end{align*}\; \; \text{ and }\; (4,2,-6)\)

    For the exercises 5-6, solve each system by graphing.

    5) \(\begin{align*} y &= 2x-7\\ y &= -x+2 \end{align*}\)

    Answer

    \((3,-1)\)

    6) \(\begin{align*} y &= -\dfrac{1}{2}x-1\\ y &= 3x+6\end{align*}\)

    For the exercises 7-8, solve each system by substitution.

    7) \(\begin{align*} x+5y &= 5\\ 2x+3y &= 4 \end{align*}\)

    Answer

    \((-1,2)\)

    8) \(\begin{align*} x-0.2y &= 1\\ -10x+2y &= 5 \end{align*}\)

     

    For the exercises 9-10, solve each system by elimination by addition.

    9) \(\begin{align*} 5x-2y &= 10\\ -3x+2y &= -2 \end{align*}\)

    Answer

    \((4, 5)\)

    10) \(\begin{align*} -x+2y &= -1\\ 5x-10y &= 6 \end{align*}\)

     

    Matrices and Matrix Operations

    For the exercises 11-14, use the matrices below and perform the matrix addition or subtraction. Indicate if the operation is undefined.

    \[A=\begin{bmatrix} 1 & 3\\ 0 & 7 \end{bmatrix}, B=\begin{bmatrix} 2 & 14\\ 22 & 6 \end{bmatrix}, C=\begin{bmatrix} 1 & 5\\ 8 & 92\\ 12 & 6 \end{bmatrix}, D=\begin{bmatrix} 10 & 14\\ 7 & 2\\ 5 & 61 \end{bmatrix}, E=\begin{bmatrix} 6 & 12\\ 14 & 5 \end{bmatrix}, F=\begin{bmatrix} 0 & 9\\ 78 & 17\\ 15 & 4 \end{bmatrix} \nonumber\]

    11) \(C+D\)

    Answer

    \(\begin{bmatrix} 11 & 19\\ 15 & 94\\ 17 & 67 \end{bmatrix}\)

    12) \(A+C\)

    13) \(B-E\)

    Answer

    \(\begin{bmatrix} -4 & 2\\ 8 & 1 \end{bmatrix}\)

    14) \(C+F\)

     

    For the exercises 15-18, use the matrices below to perform scalar multiplication.

    \[A=\begin{bmatrix} 4 & 6\\ 13 & 12 \end{bmatrix}, B=\begin{bmatrix} 3 & 9\\ 21 & 12\\ 0 & 64 \end{bmatrix}, C=\begin{bmatrix} 16 & 3 & 7 & 18\\ 90 & 5 & 3 & 29 \end{bmatrix} \nonumber\]

    15) \(3B\)

    Answer

    \(\begin{bmatrix} 9 & 27\\ 63 & 36\\ 0 & 192 \end{bmatrix}\)

    16) \(-2A\)

    17) \(-4C\)

    Answer

    \(\begin{bmatrix} -64 & -12 & -28 & -72\\ -360 & -20 & -12 & -116 \end{bmatrix}\)

    18) \(\dfrac{1}{2}C\)

     

    For the exercises 19-20, use the matrices below to perform matrix multiplication.

    \[A=\begin{bmatrix} -1 & 5\\ 3 & 2 \end{bmatrix}, B=\begin{bmatrix} 3 & 6 & 4\\ -8 & 0 & 12 \end{bmatrix}, C=\begin{bmatrix} 4 & 10\\ -2 & 6\\ 5 & 9 \end{bmatrix} \nonumber\]

    19) \(BC\)

    Answer

    \(\begin{bmatrix} 20 & 102\\ 28 & 28 \end{bmatrix}\)

    20) \(CA\)

     

    For the exercises 21-24, use the matrices below to perform the indicated operation if possible. If not possible, explain why the operation cannot be performed.

    \[A=\begin{bmatrix} 2 & -5\\ 6 & 7 \end{bmatrix}, B=\begin{bmatrix} -9 & 6\\ -4 & 2 \end{bmatrix}, C=\begin{bmatrix} 0 & 9\\ 7 & 1 \end{bmatrix}, D=\begin{bmatrix} -8 & 7 & -5\\ 4 & 3 & 2\\ 0 & 9 & 2 \end{bmatrix}, E=\begin{bmatrix} 4 & 5 & 3\\ 7 & -6 & -5\\ 1 & 0 & 9 \end{bmatrix} \nonumber\]

    21) \(4A+5D\)

    Answer

    Undefined; dimensions do not match.

    22) \(2C+B\)

    23) \(3D+4E\)

    Answer

    \(\begin{bmatrix} -8 & 41 & -3\\ 40 & -15 & -14\\ 4 & 27 & 42 \end{bmatrix}\)

    24) \(C-0.5D\)

     

    Solving Systems with Gaussian Elimination

    For the exercises 25-28, write the augmented matrix for the linear system.

    25) \(\begin{align*} 8x-37y &= 8\\ 2x+12y &= 3 \end{align*}\)

    26) \(\begin{align*} 16y &= 4\\ 9x-y &= 2 \end{align*}\)

    Answer

    \(\left [ \begin{array}{cc|c} 0 & 16 & 4\\ 9 & -1 & 2\\ \end{array} \right ]\)

    27) \(\begin{align*} 3x+2y+10z &= 3\\ -6x+2y+5z &= 13\\ 4x+z &= 18 \end{align*}\)

    28) \(\begin{align*} x+5y+8z &= 19\\ 12x+3y &= 4\\ 3x+4y+9z &= -7 \end{align*}\)

    Answer

    \(\left [ \begin{array}{ccc|c} 1 & 5 & 8 & 16\\ 12 & 3 & 0 & 4\\ 3 & 4 & 9 & -7\end{array} \right ]\)

     

    For the exercises 29-32, write the linear system from the augmented matrix.

    29) \(\left [ \begin{array}{cc|c} -2 & 5 & 5\\ 6 & -18 & 26\\ \end{array} \right ]\)

    Answer

    \(\begin{align*} -2x+5y &= 5\\ 6x-18y &= 26 \end{align*}\)

    30) \(\left [ \begin{array}{cc|c} 3 & 4 & 10\\ 10 & 17 & 439\\ \end{array} \right ]\)

    31) \(\left [ \begin{array}{ccc|c} 3 & 2 & 0 & 3\\ -1 & -9 & 4& -1\\ 8 & 5 & 7 & 8\\ \end{array} \right ]\)

    Answer

    \(\begin{align*} 3x+2y &= 13\\ -x-9y+4z &= 53\\ 8x+5y+7z &= 80 \end{align*}\)

    32) \(\left [ \begin{array}{ccc|c} 8 & 29 & 1 & 43\\ -1 & 7 & 5 & 38\\ 0 & 0 & 3 & 10\\ \end{array} \right ]\)

     

    For the exercises 33-38, solve the system by Gaussian elimination.

    33) \(\begin{align*} 2x-3y &= -9\\ 5x+4y &= 58 \end{align*}\)

    Answer

    \((6,7)\)

    34) \(\begin{align*} 6x+2y &= -4\\ 3x+4y &= -17 \end{align*}\)

    35) \(\begin{align*} -60x+45y &= 12\\ 20x-15y &= -4 \end{align*}\)

    Answer

    \(\left (x, \dfrac{4}{15}(5x+1) \right )\)

    36) \(\begin{align*} 0.5x+0.2y-0.3z &= 1\\ 0.4x-0.6y+0.7z &= 0.8\\ 0.3x-0.1y-0.9z &= 0.6 \end{align*}\)

    37) \(\begin{align*} \dfrac{4}{5}x-\dfrac{7}{8}y+\dfrac{1}{2}z &= 1\\ -\dfrac{4}{5}x-\dfrac{3}{4}y+\dfrac{1}{3}z &= -8\\ -\dfrac{2}{5}x-\dfrac{7}{8}y+\dfrac{1}{2}z &= -5 \end{align*}\)

    Answer

    \((5,12,15)\)

    38) \(\begin{align*} x+y+z &= 14\\ 2y+3z &= -14\\ -16y-24z &= -112 \end{align*}\)

     

    Solving Systems with Inverses

    In the exercises 39-40, show that matrix \(A\) is the inverse of matrix \(B\).

    39) \(A = \begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix}\)

    Answer

    \(AB = BA = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = I\)

    40) \(A = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}\)

     
     

    For the exercises 41-44, find the multiplicative inverse of each matrix, if it exists.

    41) \(\begin{bmatrix} 3 & -2\\ 1 & 9 \end{bmatrix}\)

    Answer

    \(\dfrac{1}{29}\begin{bmatrix} \dfrac{9}{29} & \dfrac{2}{29}\\ \dfrac{-1}{29} & \dfrac{3}{29} \end{bmatrix}\)

    42) \(\begin{bmatrix} 1 & 1\\ 2 & 2 \end{bmatrix}\)

    43) \(\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5}\\ \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \end{bmatrix}\)

    Answer

    \(\begin{bmatrix} 18 & 60 & -168\\ -56 & -140 & 448\\ 40 & 80 & -280 \end{bmatrix}\)

    44) \(\begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}\)

     

    For the exercises 45-48, solve the system using the inverse of a matrix.

    45) \(\begin{align*} 5x-6y &= -61\\ 4x+3y &= -2 \end{align*}\)

    Answer

    \((-5,6)\)

    46) \(\begin{align*} 8x+4y &= -100\\ 3x-4y &= 1 \end{align*}\)

    47) \(\begin{align*} 3x-2y+5z &= 21\\ 5x+4y &= 37\\ x-2y-5z &= 5 \end{align*}\)

    Answer

    \(\left (7, \dfrac{1}{2}, \dfrac{1}{5} \right )\)

    48) \(\begin{align*} 4x+4y+4z &= 40\\ 2x-3y+4z &= -12\\ -x+3y+4z &= 9 \end{align*}\)

     

    Real-World Applications

    For the exercises 49-63, write a system of equations to represent the scenario.  Then use any method to solve for the desired quantity.

    49) A fast-food restaurant has a cost of production \(C(x)=11x+120\) and a revenue function \(R(x)=5x\). When does the company start to turn a profit?

    Answer

    They never turn a profit.

    50) A cell phone factory has a cost of productiona \(C(x)=150x+10,000\) and a revenue function \(R(x)=200x\). What is the break-even point?

    51) A musician charges \(C(x)=64x+20,000\), where \(x\) is the total number of attendees at the concert. The venue charges \(\$80\) per ticket. After how many people buy tickets does the venue break even, and what is the value of the total tickets sold at that point?

    Answer

    \((1,250, 100,000)\)

    52) A guitar factory has a cost of production \(C(x)=75x+50,000\). If the company needs to break even after \(150\) units sold, at what price should they sell each guitar? Round up to the nearest dollar, and write the revenue function.

    53) The startup cost for a restaurant is \(\$120,000\), and each meal costs \(\$10\) for the restaurant to make. If each meal is then sold for \(\$15\), after how many meals does the restaurant break even?

    Answer

    \(24,000\)

    54) A moving company charges a flat rate of \(\$150\), and an additional \(\$5\) for each box. If a taxi service would charge \(\$20\) for each box, how many boxes would you need for it to be cheaper to use the moving company, and what would be the total cost?

    55) There were \(130\) faculty at a conference. If there were \(18\) more women than men attending, how many of each gender attended the conference?

    Answer

    \(56\) men, \(74\) women

    56) An investor earned triple the profits of what she earned last year. If she made \(\$500,000.48\) total for both years, how much did she earn in profits each year?

    57) An investor who dabbles in real estate invested \(1.1\) million dollars into two land investments. On the first investment, Swan Peak, her return was a \(110\%\) increase on the money she invested. On the second investment, Riverside Community, she earned \(50\%\) over what she invested. If she earned \(\$1\) million in profits, how much did she invest in each of the land deals?

    Answer

    Swan Peak: \(\$750,000\), Riverside: \(\$350,000\)

    58) If an investor invests a total of \(\$25,000\) into two bonds, one that pays \(3\%\) simple interest, and the other that pays \(2\dfrac{7}{8}\%\) interest, and the investor earns \(\$737.50\) annual interest, how much was invested in each account?

    59) If an investor invests \(\$23,000\) into two bonds, one that pays \(4\%\) in simple interest, and the other paying \(2\%\) simple interest, and the investor earns \(\$710.00\) annual interest, how much was invested in each account?

    Answer

    \(\$12,500\) in the first account, \(\$10,500\) in the second account.

    60) A concert manager counted \(350\) ticket receipts the day after a concert. The price for a student ticket was \(\$12.50\), and the price for an adult ticket was \(\$16.00\). The register confirms that \(\$5,075\) was taken in. How many student tickets and adult tickets were sold?

    61) A local band sells out for their concert. They sell all \(1,175\) tickets for a total purse of \(\$28,112.50\). The tickets were priced at \(\$20\) for student tickets, \(\$22.50\) for children, and \(\$29\) for adult tickets. If the band sold twice as many adult as children tickets, how many of each type was sold?

    Answer

    \(500\) students, \(225\) children, and \(450\) adults

    62) You invested \(\$10,000\) into two accounts: one that has simple \(3\%\) interest, the other with \(2.5\%\) interest. If your total interest payment after one year was \(\$283.50\), how much was in each account after the year passed?

    63) You invested \(\$2,300\) into account 1, and \(\$2,700\) into account 2. If the total amount of interest after one year is \(\$254\), and account 2 has \(1.5\) times the interest rate of account 1, what are the interest rates? Assume simple interest rates.

    Answer

    \(4\%\) for account 1, \(6\%\) for account 2

     

    Contributors and Attributions


    This page titled 3.5: Chapter 3 Review is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by OpenStax.