Skip to main content
Mathematics LibreTexts

2.6E: Integrating Factors (Exercises)

  • Page ID
    44232
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q2.6.1

    1.

    1. Verify that \(\mu(x,y)=y\) is an integrating factor for \[y dx+\left(2x+\frac{1}{y} \right) dy=0 \tag{A} \] on any open rectangle that does not intersect the \(x\) axis or, equivalently, that \[y^{2} dx +(2xy+1) dy=0 \tag{B} \] is exact on any such rectangle.
    2. Verify that \(y\equiv0\) is a solution of (B), but not of (A).
    3. Show that \[y(xy+1)=c \tag{C} \] is an implicit solution of (B), and explain why every differentiable function \(y=y(x)\) other than \(y\equiv0\) that satisfies (C) is also a solution of (A).

    2.

    1. Verify that \(\mu(x,y)=1/(x-y)^2\) is an integrating factor for \[-y^{2}dx+x^{2}dy=0 \tag{A} \] on any open rectangle that does not intersect the line \(y=x\) or, equivalently, that \[-\frac{y^{2}}{(x-y)^{2}}dx + \frac{x^{2}}{(x-y)^{2}}dy=0 \tag{B} \] is exact on any such rectangle.
    2. Use Theorem 2.2.1 to show that \[\frac{xy}{(x-y)}=c\tag{C} \] is an implicit solution of (B), and explain why it is also an implicit solution of (A)
    3. Verify that \(y=x\) is a solution of (A), even though it can’t be obtained from (C).

    Q2.6.2

    In Exercises 2.6.3-2.6.16 find an integrating factor; that is a function of only one variable, and solve the given equation.

    3. \(ydx-xdy=0\)

    4. \(3x^{2}ydx +2x^{3}dy=0\)

    5. \(2y^{3}dx+3y^{2}dy=0\)

    6. \((5xy+2y+5)dx+2xdy=0\)

    7. \((xy+x+2y+1)\,dx+(x+1)\,dy=0\)

    8. \((27xy^2+8y^3)\,dx+(18x^2y+12xy^2)\,dy=0\)

    9. \((6xy^2+2y)\,dx+(12x^2y+6x+3)\,dy=0\)

    10. \(y^2\,dx+\left(xy^2+3xy+{1\over y}\right)\,dy=0\)

    11. \((12x^3y+24x^2y^2)\,dx+(9x^4+32x^3y+4y)\,dy=0\)

    12. \((x^2y+4xy+2y)\,dx+(x^2+x)\,dy=0\)

    13. \(-y\,dx+(x^4-x)\,dy=0\)

    14. \(\cos x\cos y\,dx +(\sin x\cos y-\sin x\sin y+y)\,dy=0\)

    15. \((2xy+y^2)\,dx+(2xy+x^2-2x^2y^2-2xy^3)\,dy=0\)

    16. \(y\sin y\,dx+x(\sin y-y\cos y)\,dy=0\)

    Q2.6.3

    In Exercises 2.6.17-2.6.23 find an integrating factor of the form \(\mu (x,y)=P(x)Q(y)\) and solve the given equation.

    17. \(y(1+5\ln|x|)\,dx+4x\ln|x|\,dy=0\)

    18. \((\alpha y+ \gamma xy)\,dx+(\beta x+ \delta xy)\,dy=0\)

    19. \((3x^2y^3-y^2+y)\,dx+(-xy+2x)\,dy=0\)

    20. \(2y\,dx+ 3(x^2+x^2y^3)\,dy=0\)

    21. \((a\cos xy-y\sin xy)\,dx+(b\cos xy-x\sin xy)\, dy=0\)

    22. \(x^4y^4\,dx+x^5y^3\,dy=0\)

    23. \(y(x\cos x+2\sin x)\,dx+x(y+1)\sin x\,dy=0\)

    Q2.6.4

    In Exercises 2.6.24-2.6.27 find an integrating factor and solve the equation. Plot a direction field and some integral curves for the equation in the indicated rectangular region.

    24. \((x^4y^3+y)\,dx+(x^5y^2-x)\,dy=0; \quad \{-1\le x\le1,-1\le y\le1\}\)

    25. \((3xy+2y^2+y)\,dx+(x^2+2xy+x+2y)\,dy=0; \quad \{-2\le x\le2,-2\le y\le2\}\)

    26. \((12 xy+6y^3)\,dx+(9x^2+10xy^2)\,dy=0; \quad \{-2\le x\le2,-2\le y\le2\}\)

    27. \((3x^2y^2+2y)\,dx+ 2x\,dy=0; \quad \{-4\le x\le4,-4\le y\le4\}\)

    Q2.6.5

    28. Suppose \(a\), \(b\), \(c\), and \(d\) are constants such that \(ad-bc\ne0\), and let \(m\) and \(n\) be arbitrary real numbers. Show that

    \[(ax^my+by^{n+1})\,dx+(cx^{m+1}+dxy^n)\,dy=0 \nonumber \]

    has an integrating factor \(\mu(x,y)=x^\alpha y^\beta\).

    29. Suppose \(M\), \(N\), \(M_x\), and \(N_y\) are continuous for all \((x,y)\), and \(\mu=\mu(x,y)\) is an integrating factor for \[M(x,y)dx+N(x,y)dy=0.\tag{A} \]

    Assume that \(\mu_x\) and \(\mu_y\) are continuous for all \((x,y)\), and suppose \(y=y(x)\) is a differentiable function such that \(\mu(x,y(x))=0\) and \(\mu_x(x,y(x))\ne0\) for all \(x\) in some interval \(I\). Show that \(y\) is a solution of (A) on \(I\).

    30. According to Theorem 2.1.2, the general solution of the linear nonhomogeneous equation \[y'+p(x)y=f(x)\tag{A} \]

    is \[y=y_{1}x\left( c+\int f(x)/y_{1}(x) dx \right),\tag{B} \]

    where \(y_1\) is any nontrivial solution of the complementary equation \(y'+p(x)y=0\). In this exercise we obtain this conclusion in a different way. You may find it instructive to apply the method suggested here to solve some of the exercises in Section 2.1.

    1. Rewrite (A) as \[[p(x)y-f(x)]dx +dy =0,\tag{C} \] and show that \(\mu=\pm e^{\int p(x)\,dx}\) is an integrating factor for (C).
    2. Multiply (A) through by \(\mu=\pm e^{\int p(x)\,dx}\) and verify that the resulting equation can be rewritten as \[(\mu(x)y)'=\mu(x)f(x). \nonumber \] Then integrate both sides of this equation and solve for \(y\) to show that the general solution of (A) is \[y={1\over\mu(x)}\left(c+\int f(x)\mu(x)\,dx\right). \nonumber \] Why is this form of the general solution equivalent to (B)?

    This page titled 2.6E: Integrating Factors (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?