Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

8.2E: The Inverse Laplace Transform (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Q8.2.1

1. Use the table of Laplace transforms to find the inverse Laplace transform.

  1. 3(s7)4
  2. 2s4s24s+13
  3. 1s2+4s+20
  4. 2s2+9
  5. s21(s2+1)2
  6. 1(s2)24
  7. 12s24(s24s+85)2
  8. 2(s3)29
  9. s24s+3(s24s+5)2

2. Use Theorem 8.2.1 and the table of Laplace transforms to find the inverse Laplace transform.

  1. 2s+3(s7)4
  2. s21(s2)6
  3. s+5s2+6s+18
  4. 2s+1s2+9
  5. ss2+2s+1
  6. s+1s29
  7. s3+2s2s3(s+1)4
  8. 2s+3(s1)2+4
  9. 1sss2+1
  10. 3s+4s21
  11. 3s1+4s+1s2+9
  12. 3(s+2)22s+6s2+4

3. Use Heaviside’s method to find the inverse Laplace transform.

  1. 3(s+1)(s2)(s+1)(s+2)(s2)
  2. 7+(s+4)(183s)(s3)(s1)(s+4)
  3. 2+(s2)(32s)(s2)(s+2)(s3)
  4. 3(s1)(s+1)(s+4)(s2)(s1)
  5. 3+(s2)(102ss2)(s2)(s+2)(s1)(s+3)
  6. 3+(s3)(2s2+s21)(s3)(s1)(s+4)(s2)

4. Find the inverse Laplace transform.

  1. 2+3s(s2+1)(s+2)(s+1)
  2. 3s2+2s+1(s2+1)(s2+2s+2)
  3. 3s+2(s2)(s2+2s+5)
  4. 3s2+2s+1(s1)2(s+2)(s+3)
  5. 2s2+s+3(s1)2(s+2)2
  6. 3s+2(s2+1)(s1)2

5. Use the method of Example 8.2.9 to find the inverse Laplace transform.

  1. 3s+2(s2+4)(s2+9)
  2. 4s+1(s2+1)(s2+16)
  3. 5s+3(s2+1)(s2+4)
  4. s+1(4s2+1)(s2+1)
  5. 17s34(s2+16)(16s2+1)
  6. 2s1(4s2+1)(9s2+1)

6. Find the inverse Laplace transform.

  1. 17s15(s22s+5)(s2+2s+10)
  2. 8s+56(s26s+13)(s2+2s+5)
  3. s+9(s2+4s+5)(s24s+13)
  4. 3s2(s24s+5)(s26s+13)
  5. 3s1(s22s+2)(s2+2s+5)
  6. 20s+40(4s24s+5)(4s2+4s+5)

7. Find the inverse Laplace transform.

  1. 1s(s2+1)
  2. 1(s1)(s22s+17)
  3. 3s+2(s2)(s2+2s+10)
  4. 3417s(2s1)(s22s+5)
  5. s+2(s3)(s2+2s+5)
  6. 2s2(s2)(s2+2s+10)

8. Find the inverse Laplace transform.

  1. 2s+1(s2+1)(s1)(s3)
  2. s+2(s2+2s+2)(s21)
  3. 2s1(s22s+2)(s+1)(s2)
  4. s6(s21)(s2+4)
  5. 2s3s(s2)(s22s+5)
  6. 5s15(s24s+13)(s2)(s1)

9. Given that f(t)F(s), find the inverse Laplace transform of F(asb), where a>0.

    1. If s1, s2, …, sn are distinct and P is a polynomial of degree less than n, then P(s)(ss1)(ss2)(ssn)=A1ss1+A2ss2++Anssn. Multiply through by ssi to show that Ai can be obtained by ignoring the factor ssi on the left and setting s=si elsewhere.
    2. Suppose P and Q1 are polynomials such that degree(P)degree(Q1) and Q1(s1)0. Show that the coefficient of 1/(ss1) in the partial fraction expansion of F(s)=P(s)(ss1)Q1(s) is P(s1)/Q1(s1).
    3. Explain how the results of (a) and (b) are related.

8.2E: The Inverse Laplace Transform (Exercises) is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?