Q8.2.1
1. Use the table of Laplace transforms to find the inverse Laplace transform.
- 3(s−7)4
- 2s−4s2−4s+13
- 1s2+4s+20
- 2s2+9
- s2−1(s2+1)2
- 1(s−2)2−4
- 12s−24(s2−4s+85)2
- 2(s−3)2−9
- s2−4s+3(s2−4s+5)2
2. Use Theorem 8.2.1 and the table of Laplace transforms to find the inverse Laplace transform.
- 2s+3(s−7)4
- s2−1(s−2)6
- s+5s2+6s+18
- 2s+1s2+9
- ss2+2s+1
- s+1s2−9
- s3+2s2−s−3(s+1)4
- 2s+3(s−1)2+4
- 1s−ss2+1
- 3s+4s2−1
- 3s−1+4s+1s2+9
- 3(s+2)2−2s+6s2+4
3. Use Heaviside’s method to find the inverse Laplace transform.
- 3−(s+1)(s−2)(s+1)(s+2)(s−2)
- 7+(s+4)(18−3s)(s−3)(s−1)(s+4)
- 2+(s−2)(3−2s)(s−2)(s+2)(s−3)
- 3−(s−1)(s+1)(s+4)(s−2)(s−1)
- 3+(s−2)(10−2s−s2)(s−2)(s+2)(s−1)(s+3)
- 3+(s−3)(2s2+s−21)(s−3)(s−1)(s+4)(s−2)
4. Find the inverse Laplace transform.
- 2+3s(s2+1)(s+2)(s+1)
- 3s2+2s+1(s2+1)(s2+2s+2)
- 3s+2(s−2)(s2+2s+5)
- 3s2+2s+1(s−1)2(s+2)(s+3)
- 2s2+s+3(s−1)2(s+2)2
- 3s+2(s2+1)(s−1)2
5. Use the method of Example 8.2.9 to find the inverse Laplace transform.
- 3s+2(s2+4)(s2+9)
- −4s+1(s2+1)(s2+16)
- 5s+3(s2+1)(s2+4)
- −s+1(4s2+1)(s2+1)
- 17s−34(s2+16)(16s2+1)
- 2s−1(4s2+1)(9s2+1)
6. Find the inverse Laplace transform.
- 17s−15(s2−2s+5)(s2+2s+10)
- 8s+56(s2−6s+13)(s2+2s+5)
- s+9(s2+4s+5)(s2−4s+13)
- 3s−2(s2−4s+5)(s2−6s+13)
- 3s−1(s2−2s+2)(s2+2s+5)
- 20s+40(4s2−4s+5)(4s2+4s+5)
7. Find the inverse Laplace transform.
- 1s(s2+1)
- 1(s−1)(s2−2s+17)
- 3s+2(s−2)(s2+2s+10)
- 34−17s(2s−1)(s2−2s+5)
- s+2(s−3)(s2+2s+5)
- 2s−2(s−2)(s2+2s+10)
8. Find the inverse Laplace transform.
- 2s+1(s2+1)(s−1)(s−3)
- s+2(s2+2s+2)(s2−1)
- 2s−1(s2−2s+2)(s+1)(s−2)
- s−6(s2−1)(s2+4)
- 2s−3s(s−2)(s2−2s+5)
- 5s−15(s2−4s+13)(s−2)(s−1)
9. Given that f(t)↔F(s), find the inverse Laplace transform of F(as−b), where a>0.
-
- If s1, s2, …, sn are distinct and P is a polynomial of degree less than n, then P(s)(s−s1)(s−s2)⋯(s−sn)=A1s−s1+A2s−s2+⋯+Ans−sn. Multiply through by s−si to show that Ai can be obtained by ignoring the factor s−si on the left and setting s=si elsewhere.
- Suppose P and Q1 are polynomials such that degree(P)≤degree(Q1) and Q1(s1)≠0. Show that the coefficient of 1/(s−s1) in the partial fraction expansion of F(s)=P(s)(s−s1)Q1(s) is P(s1)/Q1(s1).
- Explain how the results of (a) and (b) are related.