Skip to main content
Mathematics LibreTexts

8.3E: Exercises

  • Page ID
    120499
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In Exercises 1 - 8, sketch the graph of the given parabola. Find the vertex, focus and directrix. Include the endpoints of the latus rectum in your sketch.

    1. \((x - 3)^{2} = -16y\)
    2. \(\left(x + \frac{7}{3}\right)^{2} = 2\left(y + \frac{5}{2}\right)\)
    3. \((y - 2)^{2} = -12(x + 3)\)
    4. \((y + 4)^{2} = 4x\)
    5. \((x-1)^2 = 4(y+3)\)
    6. \((x+2)^2 = -20(y-5)\)
    7. \((y-4)^2 = 18(x-2)\)
    8. \(\left(y+ \frac{3}{2}\right)^2 = -7 \left(x+ \frac{9}{2}\right)\)

    In Exercises 9 - 14, put the equation into standard form and identify the vertex, focus and directrix.

    1. \(y^{2} - 10y - 27x + 133 = 0\)
    2. \(25x^{2} + 20x + 5y - 1 = 0\)
    3. \(x^2 + 2x - 8y + 49 = 0\)
    4. \(2y^2 + 4y +x - 8 = 0\)
    5. \(x^2-10x+12y+1=0\)
    6. \(3y^2-27y+4x+\frac{211}{4} = 0\)

    In Exercises 15 - 18, find an equation for the parabola which fits the given criteria.

    1. Vertex \((7, 0)\), focus \((0, 0)\)
    2. Focus \((10, 1)\), directrix \(x = 5\)
    3. Vertex \((-8, -9)\); \((0, 0)\) and \((-16, 0)\) are points on the curve
    4. The endpoints of latus rectum are \((-2, -7)\) and \((4, -7)\)
    5. The mirror in Carl’s flashlight is a paraboloid of revolution. If the mirror is 5 centimeters in diameter and 2.5 centimeters deep, where should the light bulb be placed so it is at the focus of the mirror?
    6. A parabolic Wi-Fi antenna is constructed by taking a flat sheet of metal and bending it into a parabolic shape.5 If the cross section of the antenna is a parabola which is 45 centimeters wide and 25 centimeters deep, where should the receiver be placed to maximize reception?
    7. [parabolaarch] A parabolic arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle. Find the height of the arch exactly 1 foot in from the base of the arch.
    8. A popular novelty item is the ‘mirage bowl.’ Follow this link to see another startling application of the reflective property of the parabola.
    9. With the help of your classmates, research spinning liquid mirrors. To get you started, check out this website.

    7.3.2. Answers

    1. \((x - 3)^{2} = -16y\)
      Vertex \((3, 0)\)
      Focus \((3, -4)\)
      Directrix \(y = 4\)
      Endpoints of latus rectum \((-5, -4)\), \((11, -4)\)

      Screen Shot 2022-04-28 at 4.06.33 PM.png

    2. \(\left(x + \frac{7}{3}\right)^{2} = 2\left(y + \frac{5}{2}\right)\)
      Vertex \(\left(-\frac{7}{3}, -\frac{5}{2} \right)\)
      Focus \(\left(-\frac{7}{3}, -2 \right)\)
      Directrix \(y = -3\)
      Endpoints of latus rectum \(\left(-\frac{10}{3}, -2 \right)\), \(\left(-\frac{4}{3}, -2 \right)\)

      Screen Shot 2022-04-28 at 4.07.03 PM.png

    3. \((y - 2)^{2} = -12(x + 3)\)
      Vertex \((-3, 2)\)
      Focus \((-6, 2)\)
      Directrix \(x = 0\)
      Endpoints of latus rectum \((-6, 8)\), \((-6, -4)\)

      Screen Shot 2022-04-28 at 4.07.54 PM.png

    4. \((y + 4)^{2} = 4x\)
      Vertex \((0,-4)\)
      Focus \((1,-4)\)
      Directrix \(x = -1\)
      Endpoints of latus rectum \((1, -2)\), \((1, -6)\)

      Screen Shot 2022-04-28 at 4.09.18 PM.png

    5. \((x-1)^2 = 4(y+3)\)
      Vertex \(\left(1, -3\right)\)
      Focus \(\left(1, -2 \right)\)
      Directrix \(y = -4\)
      Endpoints of latus rectum \(\left(3, -2 \right)\), \(\left(-1, -2 \right)\)

      Screen Shot 2022-04-28 at 4.09.53 PM.png

    6. \((x+2)^2 = -20(y-5)\)
      Vertex \(\left(-2, 5\right)\)
      Focus \(\left(-2, 0 \right)\)
      Directrix \(y = 10\)
      Endpoints of latus rectum \(\left(-12, 0 \right)\), \(\left(8, 0 \right)\)

      Screen Shot 2022-04-28 at 4.10.33 PM.png

    7. \((y-4)^2 = 18(x-2)\)
      Vertex \(\left(2, 4\right)\)
      Focus \(\left( \frac{13}{2}, 4 \right)\)
      Directrix \(x = -\frac{5}{2}\)
      Endpoints of latus rectum \(\left(\frac{13}{2}, -5 \right)\), \(\left(\frac{13}{2}, 13 \right)\)

      Screen Shot 2022-04-28 at 4.11.19 PM.png

    8. \(\left(y+ \frac{3}{2}\right)^2 = -7 \left(x+ \frac{9}{2}\right)\)
      Vertex \(\left(-\frac{9}{2}, -\frac{3}{2}\right)\)
      Focus \(\left( -\frac{25}{4}, -\frac{3}{2} \right)\)
      Directrix \(x = -\frac{11}{4}\)
      Endpoints of latus rectum \(\left(-\frac{25}{4}, 2 \right)\), \(\left(-\frac{25}{4}, -5 \right)\)

      Screen Shot 2022-04-28 at 4.12.12 PM.png

    9. \((y - 5)^{2} = 27(x - 4)\)
      Vertex \((4, 5)\)
      Focus \(\left( \frac{43}{4}, 5 \right)\)
      Directrix \(x = -\frac{11}{4}\)

    10. \(\left(x + \frac{2}{5} \right)^{2} = -\frac{1}{5}(y - 1)\)
      Vertex \(\left( -\frac{2}{5}, 1 \right)\)
      Focus \(\left( -\frac{2}{5}, \frac{19}{20} \right)\)
      Directrix \(y = \frac{21}{20}\)

    11. \((x+1)^2=8(y-6)\)
      Vertex \((-1,6)\)
      Focus \((-1,8)\)
      Directrix \(y=4\)

    12. \((y+1)^2=-\frac{1}{2}(x-10)\)
      Vertex \((10,-1)\)
      Focus \(\left(\frac{79}{8}, -1 \right)\)
      Directrix \(x = \frac{81}{8}\)

    13. \((x-5)^2 = -12(y-2)\)
      Vertex \((5,2)\)
      Focus \((5,-1)\)
      Directrix \(y=5\)

    14. \(\left(y-\frac{9}{2}\right)^2 = -\frac{4}{3} (x-2)\)
      Vertex \(\left(2, \frac{9}{2}\right)\)
      Focus \(\left(\frac{5}{3}, \frac{9}{2}\right)\)
      Directrix \(x = \frac{7}{3}\)

    15. \(y^{2} = -28(x - 7)\)
    16. \((y - 1)^{2} = 10\left(x - \frac{15}{2} \right)\)
    17. \((x + 8)^{2} = \frac{64}{9}(y + 9)\)
    18. \((x - 1)^{2} = 6\left(y + \frac{17}{2}\right)\) or
      \((x - 1)^{2} = -6\left(y + \frac{11}{2}\right)\)

    19. The bulb should be placed \(0.625\) centimeters above the vertex of the mirror. (As verified by Carl himself!)
    20. The receiver should be placed \(5.0625\) centimeters from the vertex of the cross section of the antenna.
    21. The arch can be modeled by \(x^2=-(y-9)\) or \(y=9-x^2\). One foot in from the base of the arch corresponds to either \(x = \pm 2\), so the height is \(y=9-(\pm 2)^2=5\) feet.

    8.3E: Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?