Skip to main content
Mathematics LibreTexts

4.1: Power Series and Functions

  • Page ID
    163293
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Form of a Power Series

    Definition: Power Series

    A series of the form\[\sum_{n=0}^\infty c_n x^n = c_0+c_1x+c_2x^2+\cdots \nonumber \]is called a power series centered at \(x=0\). A series of the form\[\sum_{n=0}^\infty c_n(x−a)^n = c_0+c_1(x−a)+c_2(x−a)^2+\cdots \nonumber \]is a power series centered at \(x=a\). \( c_n \) are called the coefficients of the power series. The value(s) of \( x \) for which the series converges is called the interval of convergence. The largest value of \( R \) for which the series converges on \( \left( a - R, a + R \right) \) is called the radius of convergence.

    For a visual of the interval of convergence, please see this link.

    Note #1

    A power series is a polynomial function of \( x \) with (quite possibly) an infinite amount of terms.

    Note #2

    This is the first example of a series that contains variables.

    Convergence of a Power Series

    Theorem: Convergence of a Power Series

    The power series \(\displaystyle \sum_{n=0}^ \infty c_n(x−a)^n\) satisfies exactly one of the following properties:

    1. The series converges at \(x=a\) and diverges for all \(x \neq a\).
    2. The series converges for all real numbers \(x\).
    3. There exists a real number \(R \gt 0\) such that the series converges if \(|x−a| \lt R\) and diverges if \(|x−a| \gt R\). At the values \(x\) where \(|x−a|=R\), the series could converge or diverge.
    Proof (in the text)

    Suppose that the power series is centered at \(a=0\). We must first prove the following fact:

    If there exists a real number \(d \neq 0\) such that \(\displaystyle \sum_{n=0}^\infty c_n d^n\) converges, then the series \(\displaystyle \sum_{n=0}^ \infty c_nx^n\) converges absolutely for all \(x\) such that \(|x| \lt |d|\).

    Suppose, then, that \(\displaystyle \sum_{n=0}^ \infty c_nd^n\) converges. Then the \(n^{\text{th}}\) term \(c_nd^n \to 0\) as \(n \to \infty \). Therefore, there exists an integer \(N\) such that \(|c_nd^n| \leq 1\) for all \(n \geq N\). Writing\[|c_nx^n|=|c_nd^n| \left|\dfrac{x}{d}\right|^n, \nonumber \]we conclude that, for all \(n \geq N\),\[|c_nx^n| \leq \left|\dfrac{x}{d}\right|^n. \nonumber \]

    The series\[\sum_{n=N}^ \infty \left|\dfrac{x}{d}\right|^n \nonumber \]is a geometric series that converges if \(\left|\frac{x}{d}\right| \lt 1\). Therefore, by the Series Comparison Test, we conclude that \(\displaystyle \sum_{n=N}^ \infty c_n x^n\) also converges for \(|x| \lt |d|\). Since we can add a finite number of terms to a convergent series, we conclude that \(\displaystyle \sum_{n=0}^ \infty c_n x^n\) converges for \(|x| \lt |d|\).

    With this result, we can now prove the theorem. Consider the series\[\sum_{n=0}^ \infty a_nx^n \nonumber \]and let \(S\) be the set of real numbers for which the series converges. Suppose that the set contains only the center. That is, \(S=\{0\}\). Then the series falls under case i.

    Suppose that the set \(S\) is the set of all real numbers. Then the series falls under case ii.

    Suppose that \(S \neq {0}\) and \(S\) is not the set of real numbers. Then there exists a real number \(x^* \neq 0\) such that the series does not converge. Thus, the series cannot converge for any \(x\) such that \(|x| \gt |x^*|\). Therefore, the set \(S\) must be a bounded set, meaning it must have a smallest upper bound. Call that smallest upper bound \(R\). Since \(S \neq \{0\}\), the number \(R \gt 0\). Therefore, the series converges for all \(x\) such that \(|x| \lt R\), and the series falls into case iii.

    Note #3

    All power series converge at their centers.

    Note #4

    We use our previous tests to determine when our power series converge (top choice is almost always the Ratio Test).

    Note #5

    Power series that are geometric-in-form never converge at the ends of their intervals of convergence. (Why?) For all other power series, you must test for the convergence at the endpoints separately.

    Lecture Example \(\PageIndex{1}\)

    For each of the following series, find the interval and radius of convergence.

    1.    \[ \sum_{n=0}^ \infty \frac{x^n}{n!} \nonumber \](let's use Desmos to visualize this!)
    2.    \[ \sum_{n=1}^ \infty \dfrac{(x - 2)^n}{n^n} \nonumber \]
    3.    \[ \sum_{n=0}^ \infty \dfrac{(x−2)^n}{n^2 + 1} \nonumber \]
    4.    \[ \sum_{n = 1}^{\infty} \dfrac{2^n}{n} (4x - 8)^n \nonumber \]
    5.    \[ \sum_{n = 0}^{\infty} n! (2x + 1)^n \nonumber \]

    One Power Series to Rule Them All

    Theorem

    \[ \sum_{n = 0}^{\infty} x^n = \dfrac{1}{1 - x}, \quad |x| < 1 \nonumber \]

    Lecture Example \(\PageIndex{2}\)

    Find a power series representation for the function and determine the interval of convergence.

    1.    \[ f(x) = \dfrac{2}{9 + x} \nonumber \]
    2.    \[ g(x) = \dfrac{2x^2}{1 + x^3} \nonumber \]


    This page titled 4.1: Power Series and Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Roy Simpson.