4.1: Power Series and Functions
- Page ID
- 163293
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Form of a Power Series
A series of the form\[\sum_{n=0}^\infty c_n x^n = c_0+c_1x+c_2x^2+\cdots \nonumber \]is called a power series centered at \(x=0\). A series of the form\[\sum_{n=0}^\infty c_n(x−a)^n = c_0+c_1(x−a)+c_2(x−a)^2+\cdots \nonumber \]is a power series centered at \(x=a\). \( c_n \) are called the coefficients of the power series. The value(s) of \( x \) for which the series converges is called the interval of convergence. The largest value of \( R \) for which the series converges on \( \left( a - R, a + R \right) \) is called the radius of convergence.
For a visual of the interval of convergence, please see this link.
A power series is a polynomial function of \( x \) with (quite possibly) an infinite amount of terms.
This is the first example of a series that contains variables.
Convergence of a Power Series
The power series \(\displaystyle \sum_{n=0}^ \infty c_n(x−a)^n\) satisfies exactly one of the following properties:
- The series converges at \(x=a\) and diverges for all \(x \neq a\).
- The series converges for all real numbers \(x\).
- There exists a real number \(R \gt 0\) such that the series converges if \(|x−a| \lt R\) and diverges if \(|x−a| \gt R\). At the values \(x\) where \(|x−a|=R\), the series could converge or diverge.
- Proof (in the text)
-
Suppose that the power series is centered at \(a=0\). We must first prove the following fact:
If there exists a real number \(d \neq 0\) such that \(\displaystyle \sum_{n=0}^\infty c_n d^n\) converges, then the series \(\displaystyle \sum_{n=0}^ \infty c_nx^n\) converges absolutely for all \(x\) such that \(|x| \lt |d|\).
Suppose, then, that \(\displaystyle \sum_{n=0}^ \infty c_nd^n\) converges. Then the \(n^{\text{th}}\) term \(c_nd^n \to 0\) as \(n \to \infty \). Therefore, there exists an integer \(N\) such that \(|c_nd^n| \leq 1\) for all \(n \geq N\). Writing\[|c_nx^n|=|c_nd^n| \left|\dfrac{x}{d}\right|^n, \nonumber \]we conclude that, for all \(n \geq N\),\[|c_nx^n| \leq \left|\dfrac{x}{d}\right|^n. \nonumber \]
The series\[\sum_{n=N}^ \infty \left|\dfrac{x}{d}\right|^n \nonumber \]is a geometric series that converges if \(\left|\frac{x}{d}\right| \lt 1\). Therefore, by the Series Comparison Test, we conclude that \(\displaystyle \sum_{n=N}^ \infty c_n x^n\) also converges for \(|x| \lt |d|\). Since we can add a finite number of terms to a convergent series, we conclude that \(\displaystyle \sum_{n=0}^ \infty c_n x^n\) converges for \(|x| \lt |d|\).
With this result, we can now prove the theorem. Consider the series\[\sum_{n=0}^ \infty a_nx^n \nonumber \]and let \(S\) be the set of real numbers for which the series converges. Suppose that the set contains only the center. That is, \(S=\{0\}\). Then the series falls under case i.
Suppose that the set \(S\) is the set of all real numbers. Then the series falls under case ii.
Suppose that \(S \neq {0}\) and \(S\) is not the set of real numbers. Then there exists a real number \(x^* \neq 0\) such that the series does not converge. Thus, the series cannot converge for any \(x\) such that \(|x| \gt |x^*|\). Therefore, the set \(S\) must be a bounded set, meaning it must have a smallest upper bound. Call that smallest upper bound \(R\). Since \(S \neq \{0\}\), the number \(R \gt 0\). Therefore, the series converges for all \(x\) such that \(|x| \lt R\), and the series falls into case iii.
All power series converge at their centers.
We use our previous tests to determine when our power series converge (top choice is almost always the Ratio Test).
Power series that are geometric-in-form never converge at the ends of their intervals of convergence. (Why?) For all other power series, you must test for the convergence at the endpoints separately.
For each of the following series, find the interval and radius of convergence.
- \[ \sum_{n=0}^ \infty \frac{x^n}{n!} \nonumber \](let's use Desmos to visualize this!)
- \[ \sum_{n=1}^ \infty \dfrac{(x - 2)^n}{n^n} \nonumber \]
- \[ \sum_{n=0}^ \infty \dfrac{(x−2)^n}{n^2 + 1} \nonumber \]
- \[ \sum_{n = 1}^{\infty} \dfrac{2^n}{n} (4x - 8)^n \nonumber \]
- \[ \sum_{n = 0}^{\infty} n! (2x + 1)^n \nonumber \]
One Power Series to Rule Them All
\[ \sum_{n = 0}^{\infty} x^n = \dfrac{1}{1 - x}, \quad |x| < 1 \nonumber \]
Find a power series representation for the function and determine the interval of convergence.
- \[ f(x) = \dfrac{2}{9 + x} \nonumber \]
- \[ g(x) = \dfrac{2x^2}{1 + x^3} \nonumber \]