4.2: Properties of Power Series
- Page ID
- 163295
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Combining Power Series
Suppose that the two power series \(\displaystyle \sum_{n=0}^\infty c_n x^n\) and \(\displaystyle \sum_{n=0}^\infty d_n x^n\) converge to the functions \(f\) and \(g\), respectively, on a common interval \(I\). Then, the following statements are true.
- The power series \(\displaystyle \sum_{n=0}^\infty (c_n x^n \pm d_n x^n)\) converges to \(f \pm g\) on \(I\).
- For any integer \(m \geq 0\) and any real number \(b\), the power series \(\displaystyle \sum_{n=0}^\infty b x^m c_n x^n\) converges to \(b x^m f(x)\) on \(I\).
- For any integer \(m \geq 0\) and any real number \(b\), the series \(\displaystyle \sum_{n=0}^\infty c_n (bx^m)^n\) converges to \(f(bx^m)\) for all \(x\) such that \(bx^m\) is in \(I\).
- Proof (in the text)
As with all of the theorems in this section, the two series in question must share a common interval of convergence; however, these theorems hold over the intersection of the respective intervals of convergence for the given series. Thus, if one series converges on \( \left( -4, 7 \right) \) and the other converges on \( \left[ -1,10 \right) \), the theorems from this section would apply to the common interval of convergence, \( \left[ -1,7 \right) \).
Suppose that \(\displaystyle \sum_{n=0}^ \infty a_n x^n\) is a power series whose interval of convergence is \((−4,4)\), and suppose that \(\displaystyle \sum_{n=0}^ \infty b_n x^n\) is a power series whose interval of convergence is \((−6,6)\)
- Find the interval of convergence of the series \(\displaystyle \sum_{n=0}^ \infty (a_nx^n+b_nx^n)\).
- Find the interval of convergence of the series \(\displaystyle \sum_{n=0}^ \infty a_n2^nx^n\).
Find a power series for each of the following functions. Find the interval of convergence of the power series.
- \(f(x)=\frac{1 + x}{1-x}\)
- \(f(x)=\frac{6}{x^2 - 2x −8}\)
Multiplication of Power Series
Suppose that the power series \(\displaystyle \sum_{n=0}^ \infty c_n x^n\) and \(\displaystyle \sum_{n=0}^ \infty d_n x^n\) converge to \(f\) and \(g\), respectively, on a common interval \(I\). Let\[e_n=c_0d_n+c_1d_{n−1}+c_2d_{n−2}+\cdots+c_{n−1}d_1+c_nd_0=\sum_{k=0}^nc_kd_{n−k}. \nonumber \]Then\[\left(\sum_{n=0}^ \infty c_nx^n\right)\left(\sum_{n=0}^ \infty d_nx^n\right)=\sum_{n=0}^ \infty e_nx^n \nonumber \]and\[\sum_{n=0}^ \infty e_nx^n \text{ converges to } f(x) \cdot g(x) \text{ on } I. \nonumber \]The series \(\displaystyle \sum_{n=0}^ \infty e_nx^n\) is known as the Cauchy product of the series \(\displaystyle \sum_{n=0}^ \infty c_nx^n\) and \(\displaystyle \sum_{n=0}^ \infty d_nx^n\).
Multiply the power series representation\[\dfrac{1}{1−x}=\sum_{n=0}^ \infty x^n=1+x+x^2+x^3+\cdots \nonumber \]for \(|x| \lt 1\) with the power series representation\[\dfrac{1}{1−x^2}=\sum_{n=0}^ \infty \left( x^2 \right) ^n=1+x^2+x^4+x^6+\cdots \nonumber \]for \(|x| \lt 1\) to construct a power series for \(f(x)=\frac{1}{(1−x)(1−x^2)}\) on the interval \((−1,1)\)
As you progress in Mathematics, there will be a few moments (specifically, in Differential Equations) when you must find the product of two power series. It's a common convention to list the expansion's first three or four nonzero terms.
Differentiating and Integrating Power Series
Suppose that the power series \(\displaystyle \sum_{n=0}^ \infty c_n (x−a)^n\) converges on the interval \((a−R,a+R)\) for some \(R \gt 0\). Let \( f \) be the function defined by the series\[f(x)=\sum_{n=0}^ \infty c_n(x−a)^n = c_0+c_1(x−a)+c_2(x−a)^2+c_3(x−a)^3+\cdots \nonumber \]for \(|x−a| \lt R\). Then \( f \) is differentiable on the interval \((a−R,a+R)\) and we can find \(f^{\prime}\) by differentiating the series term-by-term:\[f^{\prime}(x) = \sum_{n=1}^ \infty n c_n(x−a)^{n−1} = c_1+2c_2(x−a)+3c_3(x−a)^2+\cdots \nonumber \]for \(|x−a| \lt R\). Also, to find \( \int f(x)\, dx\), we can integrate the series term-by-term. The resulting series converges on \((a−R,a+R)\), and we have\[ \int f(x)\,dx=C+\sum_{n=0}^ \infty c_n\dfrac{(x−a)^{n+1}}{n+1}=C+c_0(x−a)+c_1\dfrac{(x−a)^2}{2}+c_2\dfrac{(x−a)^3}{3}+\cdots \nonumber \]for \(|x−a| \lt R\).
Find a power series for \( f^{\prime}(x) \) given\[ f(x) = \dfrac{x^6}{1 - x}. \nonumber \]
When trying to find a power series representation for a function that is not a rational function of the form \( \frac{f(x)}{a +bx} \), it's best to ask, "What would I integrate or differentiate to get this?"
Find a power series for the following function.\[ f(x) = \dfrac{-8x^7}{(1 + x^8)^2} \nonumber \]
- Hint
-
This is the derivative of \( \frac{1}{1+x^8} \)
Use a power series to approximate the value of the definite integral to six decimal places.\[ \int_0^{0.3} \dfrac{x^2}{1 + x^4} \, dx \nonumber \]
- Hint
- \( \displaystyle \sum_{n = 0}^{\infty} \frac{(-1)^{n} x^{4n + 3}}{4n + 3} \) is an alternating series, so the error is bounded by \( b_{n + 1} \). You are correct if \( n = 2\) and the approximation is \( 0.00896891\ldots \).
\[ \ln(1 + x) = \sum_{n = 1}^{\infty} \dfrac{(-1)^{n - 1} x^n}{n}. \quad (-1,1] \nonumber \]
- Proof
- Hint: \( \ln(1 + x) = \int \frac{1}{1 + x} \, dx \)
Find a power series representation for the function and determine the radius of convergence.\[ f(x) = \dfrac{\ln(1 - x^9)}{x} \nonumber \]
\[ \tan^{-1}(x) = \sum_{n = 0}^{\infty} (-1)^n \dfrac{x^{2n + 1}}{2n + 1}, \quad |x| \leq 1 \nonumber \]
- Proof
Find a power series representation for the function and determine the radius of convergence.\[ f(x) = x^2 \tan^{-1}(x^3) \nonumber \]
Find a closed-form for the sum of the series\[ \sum_{n = 2}^{\infty} n(n - 1)x^{n - 2}. \nonumber \]
Let \(\displaystyle \sum_{n=0}^ \infty c_n(x−a)^n\) and \(\displaystyle \sum_{n=0}^ \infty d_n(x−a)^n\) be two convergent power series such that\[\sum_{n=0}^ \infty c_n(x−a)^n=\sum_{n=0}^ \infty d_n(x−a)^n \nonumber \]for all \( x \) in an open interval containing \(a\). Then \(c_n=d_n\) for all \(n \geq 0\).
- Proof
-
Let\[\begin{array}{rcl}
f(x) & = & c_0+c_1(x−a)+c_2(x−a)^2+c_3(x−a)^3+\cdots \\[6pt]
& = & d_0+d_1(x−a)+d_2(x−a)^2+d_3(x−a)^3+\cdots. \\[6pt]
\end{array} \nonumber \]Then \(f(a)=c_0=d_0\). By Theorem \( \PageIndex{3} \), we can differentiate both series term-by-term. Therefore,\[\begin{array}{rcl}
f^{\prime}(x) & = & c_1+2c_2(x−a)+3c_3(x−a)^2+\cdots \\[6pt]
& = & d_1+2d_2(x−a)+3d_3(x−a)^2+\cdots, \\[6pt]
\end{array} \nonumber \]and thus, \(f^{\prime}(a)=c_1=d_1\). Similarly,\[\begin{array}{rcl}
f^{\prime\prime}(x) & = & 2c_2+3 \cdot 2c_3(x−a)+\cdots \\[6pt]
& = & 2d_2+3 \cdot 2d_3(x−a)+\cdots \\[6pt]
\end{array} \nonumber \]implies that \(f^{\prime\prime}(a)=2c_2=2d_2\), and therefore, \(c_2=d_2\). More generally, for any integer \(n \geq 0\), \(f^{(n)} (a)=n!c_n=n!d_n\), and consequently, \(c_n=d_n\) for all \(n \geq 0\).


