# 7: Introduction to Calculus

- Page ID
- 79062

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

Calculus is the broad area of mathematics dealing with such topics as instantaneous rates of change, areas under curves, and sequences and series. Underlying all of these topics is the concept of a limit, which consists of analyzing the behavior of a function at points ever closer to a particular point, but without ever actually reaching that point. Calculus has two basic applications: differential calculus and integral calculus.

- 7.1: Prelude to Calculus
- Like the fastest land animal, a cheetah, a person does not run at his top speed at every instant. How then, do we approximate his speed at any given instant? We will find the answer to this and many related questions in this chapter.

- 7.2: A Preview of Calculus
- As we embark on our study of calculus, we shall see how its development arose from common solutions to practical problems in areas such as engineering physics—like the space travel problem posed in the chapter opener. Two key problems led to the initial formulation of calculus: (1) the tangent problem, or how to determine the slope of a line tangent to a curve at a point; and (2) the area problem, or how to determine the area under a curve.

- 7.3: Finding Limits - Numerical and Graphical Approaches
- In this section, we will examine numerical and graphical approaches to identifying limits.

- 7.4: Finding Limits - Properties of Limits
- Graphing a function or exploring a table of values to determine a limit can be cumbersome and time-consuming. When possible, it is more efficient to use the properties of limits, which is a collection of theorems for finding limits. Knowing the properties of limits allows us to compute limits directly.

- 7.5: The Limit of a Function
- A table of values or graph may be used to estimate a limit. If the limit of a function at a point does not exist, it is still possible that the limits from the left and right at that point may exist. If the limits of a function from the left and right exist and are equal, then the limit of the function is that common value. We may use limits to describe infinite behavior of a function at a point.

- 7.6: Continuity
- A function that remains level for an interval and then jumps instantaneously to a higher value is called a stepwise function. This function is an example. A function that has any hole or break in its graph is known as a discontinuous function. A stepwise function, such as parking-garage charges as a function of hours parked, is an example of a discontinuous function. We can check three different conditions to decide if a function is continuous at a particular number.

- 7.7: Defining the Derivative
- The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by finding the limit of the difference quotient or the difference quotient with increment h . The derivative of a function f(x) at a value a is found using either of the definitions for the slope of the tangent line. Velocity is the rate of change of position. As such, the velocity v(t) at time t is the derivative of the position s(t) at time t .

- 7.8: Derivatives
- Change divided by time is one example of a rate. The rates of change in the previous examples are each different. In other words, some changed faster than others. If we were to graph the functions, we could compare the rates by determining the slopes of the graphs.

## Contributors and Attributions

Jay Abramson (Arizona State University) with contributing authors. Textbook content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at https://openstax.org/details/books/precalculus.