Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

Homework 1.1

  • Page ID
    21605
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Question 1:

     

    Find the mean and median of the data below.

    1, 2, 5, 2, 42, 24, 52, 12, 31, 54, 19, 54, 14, 13, 31, 64, 43, 23, 64, 41

    calculations for question \(\PageIndex{1}\) (R):

    # Input the code you need to complete Question 1
    type your code here
    
    
    

     Question 2:

     

    a. Use the data sets below to test the given hypotheses.

     

    1, 2, 5, 2, 42, 24, 52, 12, 31, 54, 19, 54, 14, 13, 31, 64, 43, 23, 64, 41

    1, 2, 5, 9, 42, 44, 52, 12, 21, 54, 19, 54, 14, 23, 81, 64, 43, 73, 64, 81

     

    \(H_0: \mu_1 = \mu_2\)

    \(H_a: \mu_1 \ne \mu_2\)

     

    b. Use the data above to test the given hypotheses.

     

    \(H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1\)

    \(H_0: \frac{\sigma_1^2}{\sigma_2^2} \ne 1\)