2.EC: Exercises for Rational Expressions and Equations
- Page ID
- 95215
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Simplifying, Multiplying, and Dividing Rational Expressions
In the following exercises, determine the values for which the rational expression is undefined.
1. \(\dfrac{5 a+3}{3 a-2}\)
- Answer
-
\(a \neq \dfrac{2}{3}\)
2. \(\dfrac{b-7}{b^{2}-25}\)
3. \(\dfrac{5 x^{2} y^{2}}{8 y}\)
- Answer
-
\(y \neq 0\)
4. \(\dfrac{x-3}{x^{2}-x-30}\)
In the following exercises, simplify.
5. \(\dfrac{9 m^{4}}{18 m n^{3}}\)
6. \(\dfrac{x^{2}+7 x+12}{x^{2}+8 x+16}\)
- Answer
-
\(\dfrac{x+3}{x+4}\)
7. \(\dfrac{7 v-35}{25-v^{2}}\)
In the following exercises, perform the indicated operations and simplify results.
8. \(\dfrac{3 x y^{2}}{8 y^{3}} \cdot \dfrac{16 y^{2}}{24 x}\)
9. \(\dfrac{72 x-12 x^{2}}{8 x+32} \cdot \dfrac{x^{2}+10 x+24}{x^{2}-36}\)
- Answer
-
\(\dfrac{-3 x}{2}\)
10. \(\dfrac{6 y^{2}-2 y-10}{9-y^{2}} \cdot \dfrac{y^{2}-6 y+9}{6 y^{2}+29 y-20}\)
11. \(\dfrac{x^{2}-4 x-12}{x^{2}+8 x+12} \div \dfrac{x^{2}-36}{3 x}\)
- Answer
-
\(\dfrac{3 x}{(x+6)(x+6)}\)
12. \(\dfrac{y^{2}-16}{4} \div \dfrac{y^{3}-64}{2 y^{2}+8 y+32}\)
13. \(\dfrac{11+w}{w-9} \div \dfrac{121-w^{2}}{9-w}\)
- Answer
-
\(\dfrac{1}{11+w}\)
14. \(\dfrac{3 y^{2}-12 y-63}{4 y+3} \div\left(6 y^{2}-42 y\right)\)
15. \(\dfrac{\dfrac{c^{2}-64}{3 c^{2}+26 c+16}}{\dfrac{c^{2}-4 c-32}{15 c+10}}\)
- Answer
-
\(\dfrac{5}{c+4}\)
16. \(\dfrac{8 a^{2}+16 a}{a-4} \cdot \dfrac{a^{2}+2 a-24}{a^{2}+7 a+10} \div \dfrac{2 a^{2}-6 a}{a+5}\)
Adding and Subtracting Rational Expressions
In the following exercises, perform the indicated operations and simplify results.
1. \(\dfrac{4 a^{2}}{2 a-1}-\dfrac{1}{2 a-1}\)
2. \(\dfrac{y^{2}+10 y}{y+5}+\dfrac{25}{y+5}\)
- Answer
-
\(y+5\)
3. \(\dfrac{7 x^{2}}{x^{2}-9}+\dfrac{21 x}{x^{2}-9}\)
4. \(\dfrac{x^{2}}{x-7}-\dfrac{3 x+28}{x-7}\)
- Answer
-
\(x+4\)
5. \(\dfrac{y^{2}}{y+11}-\dfrac{121}{y+11}\)
6. \(\dfrac{4 q^{2}-q+3}{q^{2}+6 q+5}-\dfrac{3 q^{2}-q-6}{q^{2}+6 q+5}\)
- Answer
-
\(\dfrac{q-3}{q+5}\)
7. \(\dfrac{5 t+4 t+3}{t^{2}-25}-\dfrac{4 t^{2}-8 t-32}{t^{2}-25}\)
8. \(\dfrac{18 w}{6 w-1}+\dfrac{3 w-2}{1-6 w}\)
- Answer
-
\(\dfrac{15 w+2}{6 w-1}\)
9. \(\dfrac{a^{2}+3 a}{a^{2}-4}-\dfrac{3 a-8}{4-a^{2}}\)
10. \(\dfrac{2 b^{2}+3 b-15}{b^{2}-49}-\dfrac{b^{2}+16 b-1}{49-b^{2}}\)
- Answer
-
\(\dfrac{3 b-2}{b+7}\)
11. \(\dfrac{8 y^{2}-10 y+7}{2 y-5}+\dfrac{2 y^{2}+7 y+2}{5-2 y}\)
In the following exercises, find the LCD.
12. \(\dfrac{7}{a^{2}-3 a-10}, \dfrac{3 a}{a^{2}-a-20}\)
- Answer
-
\((a+2)(a-5)(a+4)\)
13. \(\dfrac{6}{n^{2}-4}, \dfrac{2 n}{n^{2}-4 n+4}\)
14. \(\dfrac{5}{3 p^{2}+17 p-6}, \dfrac{2 m}{3 p^{2}-23 p-8}\)
- Answer
-
\((3 p+1)(p+6)(p+8)\)
In the following exercises, perform the indicated operations and simplify results.
15. \(\dfrac{7}{5 a}+\dfrac{3}{2 b}\)
16. \(\dfrac{2}{c-2}+\dfrac{9}{c+3}\)
- Answer
-
\(\dfrac{11 c-12}{(c-2)(c+3)}\)
17. \(\dfrac{3 x}{x^{2}-9}+\dfrac{5}{x^{2}+6 x+9}\)
18. \(\dfrac{2 x}{x^{2}+10 x+24}+\dfrac{3 x}{x^{2}+8 x+16}\)
- Answer
-
\(\dfrac{5 x^{2}+26 x}{(x+4)(x+4)(x+6)}\)
19. \(\dfrac{5 q}{p^{2} q-p^{2}}+\dfrac{4 q}{q^{2}-1}\)
20. \(\dfrac{3 y}{y+2}-\dfrac{y+2}{y+8}\)
- Answer
-
\(\dfrac{2\left(y^{2}+10 y-2\right)}{(y+2)(y+8)}\)
21. \(\dfrac{-3 w-15}{w^{2}+w-20}-\dfrac{w+2}{4-w}\)
22. \(\dfrac{7 m+3}{m+2}-5\)
- Answer
-
\(\dfrac{2 m-7}{m+2}\)
23. \(\dfrac{n}{n+3}+\dfrac{2}{n-3}-\dfrac{n-9}{n^{2}-9}\)
24. \(\dfrac{8 a}{a^{2}-64}-\dfrac{4}{a+8}\)
- Answer
-
\(\dfrac{4}{a-8}\)
25. \(\dfrac{5}{12 x^{2} y}+\dfrac{7}{20 x y^{3}}\)
Simplifying Complex Rational Expressions
In the following exercises, simplify.
1. \(\dfrac{\dfrac{7 x}{x+2}}{\dfrac{14 x^{2}}{x^{2}-4}}\)
- Answer
-
\(\dfrac{x-2}{2 x}\)
2. \(\dfrac{\dfrac{2}{5}+\dfrac{5}{6}}{\dfrac{1}{3}+\dfrac{1}{4}}\)
3. \(\dfrac{x-\dfrac{3 x}{x+5}}{\dfrac{1}{x+5}+\dfrac{1}{x-5}}\)
- Answer
-
\(\dfrac{(x-8)(x-5)}{2}\)
4. \(\dfrac{\dfrac{2}{m}+\dfrac{m}{n}}{\dfrac{n}{m}-\dfrac{1}{n}}\)
5. \(\dfrac{\dfrac{1}{3}+\dfrac{1}{8}}{\dfrac{1}{4}+\dfrac{1}{12}}\)
- Answer
-
\(\dfrac{11}{8}\)
6. \(\dfrac{\dfrac{3}{a^{2}}-\dfrac{1}{b}}{\dfrac{1}{a}+\dfrac{1}{b^{2}}}\)
7. \(\dfrac{\dfrac{2}{z^{2}-49}+\dfrac{1}{z+7}}{\dfrac{9}{z+7}+\dfrac{12}{z-7}}\)
- Answer
-
\(\dfrac{z-5}{21 z+21}\)
8. \(\dfrac{\dfrac{3}{y^{2}-4 y-32}}{\dfrac{2}{y-8}+\dfrac{1}{y+4}}\)
Solving Rational Equations
In the following exercises, solve.
1. \(\dfrac{1}{2}+\dfrac{2}{3}=\dfrac{1}{x}\)
- Answer
-
\(x=\dfrac{6}{7}\)
2. \(1-\dfrac{2}{m}=\dfrac{8}{m^{2}}\)
3. \(\dfrac{1}{b-2}+\dfrac{1}{b+2}=\dfrac{3}{b^{2}-4}\)
- Answer
-
\(b=\dfrac{3}{2}\)
4. \(\dfrac{3}{q+8}-\dfrac{2}{q-2}=1\)
5. \(\dfrac{v-15}{v^{2}-9 v+18}=\dfrac{4}{v-3}+\dfrac{2}{v-6}\)
- Answer
-
no solution
6. \(\dfrac{z}{12}+\dfrac{z+3}{3 z}=\dfrac{1}{z}\)
In the following exercises, solve for the indicated variable.
7. \(\dfrac{V}{l}=h w\) for \(l\)
- Answer
-
\(l=\dfrac{V}{h w}\)
8. \(\dfrac{1}{x}-\dfrac{2}{y}=5\) for \(y\)
9. \(x=\dfrac{y+5}{z-7}\) for \(z\)
- Answer
-
\(z=\dfrac{y+5+7 x}{x}\)
10. \(P=\dfrac{k}{V}\) for \(V\)