Skip to main content
Mathematics LibreTexts

13.2: Powers and Roots

  • Page ID
    46220
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Table B1

    \(n\) \(n^{2}\) \(\sqrt{n}\) \(n^{3}\) \(\sqrt[3]{n}\)
    1 1 1 1 1
    2 4 1.414214 8 1.259921
    3 9 1.732051 27 1.442250
    4 16 2 64 1.587401
    5 25 2.236068 125 1.709976
    6 36 2.449490 216 1.817121
    7 49 2.645751 343 1.912931
    8 64 2.828427 512 2
    9 81 3 729 2.080084
    10 100 3.162278 1,000 2.154435
    11 121 3316625 1,331 1.223980
    12 144 3.464102 1,728 2.289428
    13 169 3.605551 2,197 2.351335
    14 196 3.741657 2,744 2.410142
    15 225 3.872983 3,375 2,466212
    16 256 4 4,096 2.519842
    17 289 4.123106 4,913 2.571282
    18 324 4.242641 5,832 2.620741
    19 361 4.358899 6,859 2.668402
    20 400 4.472136 8,000 2.714418
    21 441 4.582576 9,261 2.758924
    22 484 4.690416 10,648 2.802039
    23 529 4.795832 12,167 2.843867
    24 576 4.898979 13,824 2.884499
    25 625 5 15,625 2.924018
    26 676 5.099020 17,576 2.962496
    27 729 5.196152 19,683 3
    28 784 5.291503 21,952 3.036589
    29 841 5.385165 24,389 3.072317
    30 900 5.477226 27,000 3.107233
    31 961 5.567764 29,791 3.141381
    32 1,024 5.656854 32,768 3.17482
    33 1,089 5.744563 35,937 3.207534
    34 1,156 5.830952 39,304 3.239612
    35 1,225 5.916080 42,875 3.271066
    36 1,296 6 46,656 3.301927
    37 1,369 6.082763 50,653 3.332222
    38 1,444 6164414 54,872 3.361975
    39 1,521 6.244998 59,319 3.391211
    40 1,600 6.324555 64,000 3.419952
    41 1,681 6.403124 68,921 3.448217
    42 1.764 6.480741 74,088 3.476027
    43 1.849 6.557439 79,507 3.503398
    44 1,936 6.633250 85,184 3.530348
    45 2,025 6.708204 91,125 3.556893
    46 2,116 6.782330 97,336 3.583048
    47 2,209 6.855655 103,823 3.608826
    48 2,304 6.928203 110,592 3.6324241
    49 2,401 7 117,649 3.659306
    50 2,500 7.071068 125,000 3.684031
    51 2,601 7.141428 132,651 3.708430
    52 2,704 7.211103 140,608 3.732511
    53 2,809 7.280110 148,877 3.756286
    54 2,916 7.348469 157,464 3.779763
    55 3,025 7.416198 166,375 3.802952
    56 3,136 7.483315 175,616 3.825862
    57 3,249 7.549834 185,193 3.848501
    58 3,364 7.615773 195,112 3.870877
    59 3,481 7.681146 205,379 3.892996
    60 3,600 7.745967 216,000 3.914868
    61 3,721 7.810250 226,981 3.936497
    62 3,844 7.874008 238,328 3.957892
    63 3,969 7.937254 250,047 3.979057
    64 4,096 8 262,144 4
    65 4,225 8.062258 274,625 4.020726
    66 6,356 8.124038 287,496 4.041240
    67 4,489 8.185353 300,763 4.061548
    68 4,624 8.246211 314,432 4.081655
    69 4,761 8.306624 328,509 4.101566
    70 4,900 8.366600 343,000 4.121285
    71 5,041 8.426150 357,911 4.140818
    72 5,184 8.485281 389,017 4.179339
    73 5,329 8.544004 389,017 4.179339
    74 5,476 8.602325 405,224 4.198336
    75 5,625 8.660254 421,875 4.217163
    76 5,776 8.17798 438,976 4.235824
    77 5.929 8774964 456,533 4.254321
    78 6,084 8.831761 474,552 4.272659
    79 6,241 8.888194 493,039 4.290840
    80 6,400 8.944272 512,000 4.308869
    81 6,561 9 531,441 4.326749
    82 6,724 9.055385 551,368 4.344481
    83 6,889 9.110434 571,787 4.362071
    84 7,056 9.165151 592,704 4.379519
    85 7,225 9.219544 614,125 4.396830
    86 7,396 9.273618 636,056 4.414005
    87 7,569 9.327379 658,503 4.431048
    88 7,744 9.380832 681,472 4.447960
    89 7,821 8.433981 704,969 4.464745
    90 8,100 9.486833 729,000 4.481405
    91 8,281 9.539392 753,571 4.497941
    92 8,464 9.591663 778,688 4.514357
    93 8,649 9.643651 804,357 4.530655
    94 8,836 9.695360 830,584 4.546836
    95 9,025 9.746794 857,375 4.562903
    96 9,216 9.797959 884,736 4.578857
    97 9,409 9.848858 912,673 4.594701
    98 9,604 9.899495 941,192 4.610436
    99 9,801 9.949874 970,299 4.62065
    100 10,000 10 1,000,000 4.641589

    Contributors and Attributions


    13.2: Powers and Roots is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?