Skip to main content
Mathematics LibreTexts

3.E: Trigonometric Identities and Equations (Exercises)

  • Page ID
    60928
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    3.1: Solving Trigonometric Equations with Identities

    In this section, we will begin an examination of the fundamental trigonometric identities, including how we can verify them and how we can use them to simplify trigonometric expressions.

    Verbal

    1) We know \(g(x)=\cos x\) is an even function, and \(f(x)=\sin x\) and \(h(x)=\tan x\)are odd functions. What about \(G(x)=\cos ^2 x\), \(F(x)=\sin ^2 x\) and \(H(x)=\tan ^2 x\)? Are they even, odd, or neither? Why?

    Answer

    All three functions, \(F,G,\) and \(H\), are even.

    This is because

    \(F(-x)=\sin(-x)\sin(-x)=(-\sin x)(-\sin x)=\sin^2 x=F(x),G(-x)=\cos(-x)\cos(-x)=\cos x\cos x= cos^2 x=H(-x)=\tan(-x)\tan(-x)=(-\tan x)(-\tan x)=\tan2x=H(x)\)

    2) Examine the graph of \(f(x)=\sec x\) on the interval \([-\pi ,\pi ]\).How can we tell whether the function is even or odd by only observing the graph of \(f(x)=\sec x\)?

    3) After examining the reciprocal identity for \(\sec t\), explain why the function is undefined at certain points.

    Answer

    When \(\cos t = 0\), then \(\sec t = 10\), which is undefined.

    4) All of the Pythagorean identities are related. Describe how to manipulate the equations to get from \(\sin^2t+\cos^2t=1\) to the other forms.

    Algebraic

    For the exercises 5-15, use the fundamental identities to fully simplify the expression.

    5) \(\sin x \cos x \sec x\)

    Answer

    \(\sin x\)

    6) \(\sin(-x)\cos(-x)\csc(-x)\)

    7) \(\tan x\sin x+\sec x\cos^2x\)

    Answer

    \(\sec x\)

    8) \(\csc x+\cos x\cot(-x)\)

    9) \(\dfrac{\cot t+\tan t}{\sec (-t)}\)

    Answer

    \(\csc x\)

    10) \(3\sin^3 t\csc t+\cos^2 t+2\cos(-t)\cos t\)

    11) \(-\tan(-x)\cot(-x)\)

    Answer

    \(-1\)

    12) \(\dfrac{-\sin (-x)\cos x\sec x\csc x\tan x}{\cot x}\)

    13) \(\dfrac{1+\tan ^2\theta }{\csc ^2\theta }+\sin ^2\theta +\dfrac{1}{\sec ^\theta }\)

    Answer

    \(\sec^2 x\)

    14) \(\left (\dfrac{\tan x}{\csc ^2 x}+\dfrac{\tan x}{\sec ^2 x} \right )\left (\dfrac{1+\tan x}{1+\cot x} \right )-\dfrac{1}{\cos ^2 x}\)

    15) \(\dfrac{1-\cos ^2 x}{\tan ^2 x}+2\sin ^2 x\)

    Answer

    \(\sin^2 x+1\)

    For the exercises 16-28, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.

    16) \(\dfrac{\tan x+\cot x}{\csc x}; \cos x\)

    17) \(\dfrac{\sec x+\csc x}{1+\tan x}; \sin x\)

    Answer

    \(\dfrac{1}{\sin x}\)

    18) \(\dfrac{\cos x}{1+\sin x}+\tan x; \cos x\)

    19) \(\dfrac{1}{\sin x\cos x}-\cot x; \cot x\)

    Answer

    \(\dfrac{1}{\cot x}\)

    20) \(\dfrac{1}{1-\cos x}-\dfrac{\cos x}{1+\cos x}; \csc x\)

    21) \((\sec x+\csc x)(\sin x+\cos x)-2-\cot x; \tan x\)

    Answer

    \(\tan x\)

    22) \(\dfrac{1}{\csc x-\sin x}; \sec x\) and \(\tan x\)

    23) \(\dfrac{1-\sin x}{1+\sin x}-\dfrac{1+\sin x}{1-\sin x}; \sec x\) and \(\tan x\)

    Answer

    \(-4\sec x \tan x\)

    24) \(\tan x; \sec x\)

    25) \(\sec x; \cot x\)

    Answer

    \(\pm \sqrt{\dfrac{1}{\cot ^2 x}+1}\)

    26) \(\sec x; \sin x\)

    27) \(\cot x; \sin x\)

    Answer

    \(\dfrac{\pm \sqrt{1-\sin ^2 x}}{\sin x}\)

    28) \(\cot x; \csc x\)

    For the exercises 29-33, verify the identity.

    29) \(\cos x-\cos^3x=\cos x \sin^2 x\)

    Answer

    Answers will vary. Sample proof:

    \(\begin{align*} \cos x-\cos^3x &= \cos x (1-\cos^2 x)\\ &= \cos x\sin ^x \end{align*}\)

    30) \(\cos x(\tan x-\sec(-x))=\sin x-1\)

    31) \(\dfrac{1+\sin ^2x}{\cos ^2 x}=\dfrac{1}{\cos ^2 x}+\dfrac{\sin ^2x}{\cos ^2 x}=1+2\tan ^2x\)

    Answer

    Answers will vary. Sample proof:

    \(\begin{align*} \dfrac{1+\sin ^2x}{\cos ^2 x} &= \dfrac{1}{\cos ^2 x}+\dfrac{\sin ^2x}{\cos ^2 x}\\ &= \sec ^2x+\tan ^2x\\ &= \tan ^2x+1+\tan ^2x\\ &= 1+2\tan ^2x \end{align*}\)

    32) \((\sin x+\cos x)^2=1+2 \sin x\cos x\)

    33) \(\cos^2x-\tan^2x=2-\sin^2x-\sec^2x\)

    Answer

    Answers will vary. Sample proof:

    \(\begin{align*} \cos^2x-\tan^2x &= 1-\sin^2x-\left (\sec^2x -1 \right )\\ &= 1-\sin^2x-\sec^2x +1\\ &= 2-\sin^2x-\sec^2x \end{align*}\)

    Extensions

    For the exercises 34-39, prove or disprove the identity.

    34) \(\dfrac{1}{1+\cos x}-\dfrac{1}{1-\cos (-x)}=-2\cot x\csc x\)

    35) \(\csc^2x(1+\sin^2x)=\cot^2x\)

    Answer

    False

    36) \(\left (\dfrac{\sec ^2(-x)-\tan ^2x}{\tan x} \right )\left (\dfrac{2+2\tan x}{2+2\cot x} \right )-2\sin ^2x=\cos 2x\)

    37) \(\dfrac{\tan x}{\sec x}\sin (-x)=\cos ^2x\)

    Answer

    False

    38) \(\dfrac{\sec (-x)}{\tan x+\cot x}=-\sin (-x)\)

    39) \(\dfrac{1+\sin x}{\cos x}=\dfrac{\cos x}{1+\sin (-x)}\)

    Answer

    Proved with negative and Pythagorean identities

    For the exercises 40-, determine whether the identity is true or false. If false, find an appropriate equivalent expression.

    40) \(\dfrac{\cos ^2 \theta -\sin ^2 \theta }{1-\tan ^\theta }=\sin ^2 \theta\)

    41) \(3\sin^2\theta + 4\cos^2\theta =3+\cos^2\theta\)

    Answer

    True

    \(\begin{align*} 3\sin^2\theta + 4\cos^2\theta &= 3\sin ^2\theta +3\cos ^2\theta +\cos^2\theta \\ &= 3\left ( \sin ^2\theta +\cos ^2\theta \right )+\cos^2\theta \\ &= 3+\cos^2\theta \end{align*}\)

    42) \(\dfrac{\sec \theta +\tan \theta }{\cot \theta+\cos ^\theta }=\sec ^2 \theta\)

    3.2: Sum and Difference Identities

    In this section, we will learn techniques that will enable us to solve useful problems. The formulas that follow will simplify many trigonometric expressions and equations. Keep in mind that, throughout this section, the term formula is used synonymously with the word identity.

    Verbal

    1) Explain the basis for the cofunction identities and when they apply.

    Answer

    The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures \(x\), the second angle measures \(\dfrac{\pi }{2}-x\).Then \(\sin x=\cos \left (\dfrac{\pi }{2}-x \right )\).The same holds for the other cofunction identities. The key is that the angles are complementary.

    2) Is there only one way to evaluate \(\cos \left (\dfrac{5\pi }{4} \right )\)?Explain how to set up the solution in two different ways, and then compute to make sure they give the same answer.

    3) Explain to someone who has forgotten the even-odd properties of sinusoidal functions how the addition and subtraction formulas can determine this characteristic for \(f(x)=\sin (x)\) and \(g(x)=\cos (x)\).(Hint: \(0-x=-x\))

    Answer

    \(\sin (-x)=-\sin x\), so \(\sin x\) is odd. \(\cos (-x)=\cos (0-x)=\cos x\), so \(\cos x\) is even.

    Algebraic

    For the exercises 4-9, find the exact value.

    4) \(\cos \left (\dfrac{7\pi }{12} \right)\)

    5) \(\cos \left (\dfrac{\pi }{12} \right)\)

    Answer

    \(\dfrac{\sqrt{2}+\sqrt{6}}{4}\)

    6) \(\sin \left (\dfrac{5\pi }{12} \right)\)

    7) \(\sin \left (\dfrac{11\pi }{12} \right)\)

    Answer

    \(\dfrac{\sqrt{6}-\sqrt{2}}{4}\)

    8) \(\tan \left (-\dfrac{\pi }{12} \right)\)

    9) \(\tan \left (\dfrac{19\pi }{12} \right)\)

    Answer

    \(-2-\sqrt{3}\)

    For the exercises 10-13, rewrite in terms of \(\sin x\) and \(\cos x\)

    10) \(\sin \left (x+\dfrac{11\pi }{6} \right)\)

    11) \(\sin \left (x-\dfrac{3\pi }{4} \right)\)

    Answer

    \(-\dfrac{\sqrt{2}}{2}\sin x-\dfrac{\sqrt{2}}{2}\cos x\)

    12) \(\cos \left (x-\dfrac{5\pi }{6} \right)\)

    13) \(\cos \left (x+\dfrac{2\pi }{3} \right)\)

    Answer

    \(-\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x\)

    For the exercises 14-19, simplify the given expression.

    14) \(\csc \left (\dfrac{\pi }{2}-t \right)\)

    15) \(\sec \left (\dfrac{\pi }{2}-\theta \right)\)

    Answer

    \(\csc \theta\)

    16) \(\cot \left (\dfrac{\pi }{2}-x \right)\)

    17) \(\tan \left (\dfrac{\pi }{2}-x \right)\)

    Answer

    \(\cot x\)

    18) \(\sin(2x)\cos(5x)-\sin(5x)\cos(2x)\)

    19) \(\dfrac{\tan \left (\dfrac{3}{2}x \right)-\tan \left (\dfrac{7}{5}x \right)}{1+\tan \left (\dfrac{3}{2}x \right)\tan \left (\dfrac{7}{5}x \right)}\)

    Answer

    \(\tan \left (\dfrac{x}{10} \right)\)

    For the exercises 20-21, find the requested information.

    20) Given that \(\sin a=\dfrac{2}{3}\) and \(\cos b=-\dfrac{1}{4}\), with \(a\) and \(b\) both in the interval \(\left [ \dfrac{\pi }{2}, \pi \right )\), find \(\sin (a+b)\) and \(\cos (a-b)\).

    21) Given that \(\sin a=\dfrac{4}{5}\) and \(\cos b=\dfrac{1}{3}\), with \(a\) and \(b\) both in the interval \(\left [ 0, \dfrac{\pi }{2} \right )\), find \(\sin (a-b)\) and \(\cos (a+b)\).

    Answer

    \(\sin (a-b)=\left ( \dfrac{4}{5} \right )\left ( \dfrac{1}{3} \right )-\left ( \dfrac{3}{5} \right )\left ( \dfrac{2\sqrt{2}}{3} \right )=\dfrac{4-6\sqrt{2}}{15}\)

    \(\cos (a+b)=\left ( \dfrac{3}{5} \right )\left ( \dfrac{1}{3} \right )-\left ( \dfrac{4}{5} \right )\left ( \dfrac{2\sqrt{2}}{3} \right )=\dfrac{3-8\sqrt{2}}{15}\)

    For the exercises 22-24, find the exact value of each expression.

    22) \(\sin \left ( \cos^{-1}\left ( 0 \right )- \cos^{-1}\left ( \dfrac{1}{2} \right )\right )\)

    23) \(\cos \left ( \cos^{-1}\left ( \dfrac{\sqrt{2}}{2} \right )+ \sin^{-1}\left ( \dfrac{\sqrt{3}}{2} \right )\right )\)

    Answer

    \(\dfrac{\sqrt{2}-\sqrt{6}}{4}\)

    24) \(\tan \left ( \sin^{-1}\left ( \dfrac{1}{2} \right )- \cos^{-1}\left ( \dfrac{1}{2} \right )\right )\)

    Graphical

    For the exercises 25-32, simplify the expression, and then graph both expressions as functions to verify the graphs are identical.

    25) \(\cos \left ( \dfrac{\pi }{2}-x \right )\)

    Answer

    \(\sin x\)

    CNX_Precalc_Figure_07_02_201.jpg

    26) \(\sin (\pi -x)\)

    27) \(\tan \left ( \dfrac{\pi }{3}+x \right )\)

    Answer

    \(\cot \left ( \dfrac{\pi }{6}-x \right )\)

    CNX_Precalc_Figure_07_02_203.jpg

    28) \(\sin \left ( \dfrac{\pi }{3}+x \right )\)

    29) \(\tan \left ( \dfrac{\pi }{4}-x \right )\)

    Answer

    \(\cot \left ( \dfrac{\pi }{4}+x \right )\)

    CNX_Precalc_Figure_07_02_205.jpg

    30) \(\cos \left ( \dfrac{7\pi }{6}+x \right )\)

    31) \(\sin \left ( \dfrac{\pi }{4}+x \right )\)

    Answer

    \(\dfrac{\sin x}{\sqrt{2}}+\dfrac{\cos x}{\sqrt{2}}\)

    CNX_Precalc_Figure_07_02_207.jpg

    32) \(\cos \left ( \dfrac{5\pi }{4}+x \right )\)

    For the exercises 33-41, use a graph to determine whether the functions are the same or different. If they are the same, show why. If they are different, replace the second function with one that is identical to the first. (Hint: think \(2x=x+x\))

    33) \(f(x)=\sin(4x)-\sin(3x)\cos x, g(x)=\sin x \cos(3x)\)

    Answer

    They are the same.

    34) \(f(x)=\cos(4x)+\sin x \sin(3x), g(x)=-\cos x \cos(3x)\)

    35) \(f(x)=\sin(3x)\cos(6x), g(x)=-\sin(3x)\cos(6x)\)

    Answer

    They are different, try \(g(x)=\sin(9x)-\cos(3x)\sin(6x)\)

    36) \(f(x)=\sin(4x), g(x)=\sin(5x)\cos x-\cos(5x)\sin x\)

    37) \(f(x)=\sin(2x), g(x)=2 \sin x \cos x\)

    Answer

    They are the same.

    38) \(f(\theta )=\cos(2\theta ), g(\theta )=\cos^2\theta -\sin^2\theta\)

    39) \(f(\theta )=\tan(2\theta ), g(\theta )=\dfrac{\tan \theta }{1+\tan^2\theta }\)

    Answer

    They are different, try \(g(\theta )=\dfrac{2\tan \theta }{1-\tan^2\theta }\)

    40) \(f(x)=\sin(3x)\sin x, g(x)=\sin^2(2x)\cos^2x-\cos^2(2x)\sin2x\)

    41) \(f(x)=\tan(-x), g(x)=\dfrac{\tan x-\tan(2x)}{1-\tan x \tan(2x)}\)

    Answer

    They are different, try \(g(x)=\dfrac{\tan x-\tan(2x)}{1+\tan x \tan(2x)}\)

    Technology

    For the exercises 42-46, find the exact value algebraically, and then confirm the answer with a calculator to the fourth decimal point.

    42) \(\sin (75^{\circ})\)

    43) \(\sin (195^{\circ})\)

    Answer

    \(-\dfrac{\sqrt{3}-1}{2\sqrt{2}}\), or \(-0.2588\)

    44) \(\cos (165^{\circ})\)

    45) \(\cos (345^{\circ})\)

    Answer

    \(\dfrac{1+\sqrt{3}}{2\sqrt{2}}\), or \(-0.9659\)

    46) \(\tan (-15^{\circ})\)

    Extensions

    For the exercises 47-51, prove the identities provided.

    47) \(\tan \left ( x+\dfrac{\pi }{4} \right )=\dfrac{\tan x+1}{1-\tan x}\)

    Answer

    \(\begin{align*} \tan \left ( x+\dfrac{\pi }{4} \right ) &= \\ \dfrac{\tan x + \tan\left (\tfrac{\pi}{4} \right )}{1-\tan x \tan\left (\tfrac{\pi}{4} \right )} &= \\ \dfrac{\tan x+1}{1-\tan x(1)} &= \dfrac{\tan x+1}{1-\tan x} \end{align*}\)

    48) \(\dfrac{\tan (a+b)}{\tan (a-b)}=\dfrac{\sin a \cos a + \sin b \cos b}{\sin a \cos a - \sin b \cos b}\)

    49) \(\dfrac{\cos (a+b)}{\cos a \cos b}=1-\tan a \tan b\)

    Answer

    \(\begin{align*} \dfrac{\cos (a+b)}{\cos a \cos b} &= \\ \dfrac{\cos a \cos b}{\cos a \cos b}- \dfrac{\sin a \sin b}{\cos a \cos b} &= 1-\tan a \tan b \end{align*}\)

    50) \(\cos(x+y)\cos(x-y)=\cos^2x-\sin^2y\)

    51) \(\dfrac{\cos(x+h)-\cos(x)}{h}=\cos x\dfrac{\cos h-1}{h}-\sin x \dfrac{\sin h}{h}\)

    Answer

    \(\begin{align*} \dfrac{\cos(x+h)-\cos(x)}{h} &= \\ \dfrac{\cos x\cosh - \sin x\sinh -\cos x}{h} &= \\ \dfrac{\cos x(\cosh-1) - \sin x(\sinh-1)}{h} &= \cos x\dfrac{\cos h-1}{h}-\sin x \dfrac{\sin h}{h} \end{align*}\)

    For the exercises 52-, prove or disprove the statements.

    52) \(\tan (u+v)=\dfrac{\tan u+\tan v}{1-\tan u \tan v}\)

    53) \(\tan (u-v)=\dfrac{\tan u-\tan v}{1+\tan u \tan v}\)

    Answer

    True

    54) \(\dfrac{\tan (x+y)}{1+\tan x \tan x}=\dfrac{\tan x + \tan y}{1-\tan^2 x \tan^2 y}\)

    55) If \(\alpha ,\beta\), and \(\gamma\) are angles in the same triangle, then prove or disprove

    \(x\) \(y\)
    \(0\) \(5\)
    \(2\) \(1\)
    \(4\) \(−3\)
    \(6\) \(1\)
    \(8\) \(5\)
    \(10\) \(1\)
    \(12\) \(−3\)

    \(x\) \(y\)
    \(0\) \(2\)
    \(\frac{π}{4}\) \(7\)
    \(\frac{π}{2}\) \(2\)
    \(\frac{3π}{4}\) \(−3\)
    \(π\) \(2\)
    \(\frac{5π}{4}\) \(7\)
    \(\frac{3π}{2}\) \(2\)

    \(x\) \(y\)
    \(0\) \(2\)
    \(\frac{π}{4}\) \(7\)
    \(\frac{π}{2}\) \(2\)
    \(\frac{3π}{4}\) \(−3\)
    \(π\) \(2\)
    \(\frac{5π}{4}\) \(7\)
    \(\frac{3π}{2}\) \(2\)

    \(x\) \(y\)
    \(0\) \(1\)
    \(1\) \(−3\)
    \(2\) \(−7\)
    \(3\) \(−3\)
    \(4\) \(1\)
    \(5\) \(−3\)
    \(6\) \(−7\)

    \(0\)
    \(2\)
    \(4\)

    \(0\)
    \(2\)
    \(4\)

    \(x\) \(y\)
    \(−3\) \(−1−\sqrt{2}\)
    \(−2\) \(−1\)
    \(−1\) \(1−\sqrt{2}\)
    \(0\) \(0\)
    \(1\) \(\sqrt{2}−1\)
    \(2\) \(1\)
    \(3\) \(\sqrt{2}+1\)

    \(x\) \(y\)
    \(−1\) \(\sqrt{3}−2\)
    \(0\) \(0\)
    \(1\) \(2−\sqrt{3}\)
    \(2\) \(\frac{\sqrt{3}}{3}\)
    \(3\) \(1\)
    \(4\) \(\sqrt{3}\)
    \(5\) \(2+\sqrt{3}\)

    \(x\) 0 1 2 3
    \(y\) 6 29 96 379

    \(x\) 0 1 2 3
    \(y\) 6 34 150 746

    \(x\) 0 1 2 3
    \(y\) 4 0 16 -40

    \(x\) 0 1 2 3
    \(y\) 11 3 1 3

    \(x\) 0 1 2 3
    \(y\) 4 1 −11 1


    This page titled 3.E: Trigonometric Identities and Equations (Exercises) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.