Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

27.6: B1.06: Exercises

  • Page ID
    51774
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    After you work each of these problems, use some method of checking your answer and show that check right beside your solution. Don’t forget to prepare and fill out the homework cover sheet as you do the problems.

    Part I

    1. Simplify 10(4x+5)
    2. Simplify -6(x+9)
    3. Simplify 2(3x-7)
    4. Simplify 17-5(4x-12)
    5. Solve 3x-4=11
    6. Find a formula for y (that is, solve for y in terms of x):   y-7=-4(x-2)+12
    7. Solve 0.75-0.08t=1.22
    8. Solve \frac{14}{3}=\frac{8}{x}
    9. Solve \frac{7}{33}=\frac{x}{5}
    10. Solve \frac{12}{x}=6
    11. Find a formula for h (that is, solve for h.) \frac{h}{36}=\frac{m}{k}.
    12. Find a formula for d (that is, solve for d.) \frac{a}{0.37}=\frac{r}{d}.
    13. Evaluate y=6+2x when x=7
    14. Evaluate y=u{{x}^{4}} when x=2 and u=9

    Part II

    1. Solve 8x+7=31
    2. Solve 6x-14=40
    3. Simplify 13(x+2)
    4. Simplify 8(x-2)
    5. Solve \frac{5}{2}=\frac{35}{x}
    6. Solve \frac{9}{r}=\frac{54}{30}
    7. Solve \frac{7}{5}=\frac{x}{35}
    8. Solve 17=-3x+2
    9. Find a formula for y (that is, solve for y): y-7=4(x-3)
    10. Find a formula for y (that is, solve for y): y-15=3(x-7)
    11. Find a formula for k (that is, solve for k.) \frac{m}{2.1}=\frac{k}{t}.
    12. Find a formula for m (that is, solve for m.) \frac{b}{m}=\frac{w}{17}.
    13. Evaluate L=A\cdot{{r}^{t}} where A=10,\,\,\,\,r=2,\,\,\,\,t=5
    14. Evaluate y=7x-3 where x=5
    CC licensed content, Shared previously
    • Mathematics for Modeling. Authored by: Mary Parker and Hunter Ellinger. License: CC BY: Attribution