Skip to main content
Mathematics LibreTexts

27.2: B1.02- Section 1

  • Page ID
    51770
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Use the distributive property and other properties to simplify expressions and check your work.

    Distributive Property:

    For any real numbers a, b, and c:     a(b + c) = ab + ac.

    For any real numbers a, b, and c:     a(bc) = abac

    The fact that two expressions are equal means that they are equal for any values of the variable. So you can check by taking a few values for the variable and making sure that those do make the two sides equal. Usually we don’t use the values 0 or 1 or 2 as the value for the variable and it is best to avoid numbers that already appear in the problem.

    Example 1

    Simplify 10(4x+5).

    [reveal-answer q=”894348″]Show Answer[/reveal-answer]
    [hidden-answer a=”894348″]

    Solution:

    10(4x+5)=40x+50

    Partial Check:   Use

    \begin{align}&\,\,\,\,\,\,10(4x+5)=40x+50\\&10(4\cdot3+5)\,\,?=?\,40\cdot3+50\\&\,10(12+5)\,\,\,?=?\,\,120+50\\&\,\,\,\,\,\,\,10(17)\,\,\,?=?\,\,170\\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,170\,\,\,\,=\,\,\,\,170\\\end{align}

    [/hidden-answer]

    Example 2

    Simplify -6(x+9).

    [reveal-answer q=”113961″]Show Answer[/reveal-answer]
    [hidden-answer a=”113961″]

    Solution:

    -6(x+9)=-6x-54

    Partial Check: Use x=5

    \begin{align}&\,\,\,\,-6(x+9)=-6x-54\\&-6(5+9)\,\,\,?=?\,\,\,-6*5-54\\&\,\,\,-6(14)\,\,\,?=?\,\,\,-30-54\\&\,\,\,\,\,\,\,\,\,\,\,\,\,-84\,\,=\,\,-84\\\end{align}

    [/hidden-answer]

    Example 3

    Simplify 2(3x-7).

    [reveal-answer q=”802251″]Show Answer[/reveal-answer]
    [hidden-answer a=”802251″]

    Solution:

    \begin{align}&2(3x-7)=2\cdot3x-2\cdot7\\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=6x-14\\\end{align}

    Partial Check: Use x=5

    \begin{align}&2(3\cdot5-7)\,\,\,\,\,?=?\,\,\,\,6\cdot5-14\\&\,\,2(15-7)\,\,\,\,?=?\,\,\,30-14\\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2(8)\,\,\,=\,\,\,16\\\end{align}

    [/hidden-answer]

    Example 4

    Simplify 17-5(4x-12).

    [reveal-answer q=”785026″]Show Answer[/reveal-answer]
    [hidden-answer a=”785026″]

    Solution:

    \begin{align}&17-5(4x-12)=17-20x-(-60)\\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=17-20x+60\\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=77-20x\\\end{align}

    Partial Check: Use x=3

    \begin{align}&17-5(4\cdot3-12)\,\,\,?=?\,\,\,77-20\cdot3\\&\,\,\,17-5(12-12)\,\,\,?=?\,\,77-60\\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,17-0\,\,\,=\,\,\,\,17\\\end{align}

    [/hidden-answer]

    Caution: Checking your work on problems like these is not completely satisfactory, because students who make a mistake in the original solution often make a corresponding mistake in the checking process. So the fact that it checks does not provide complete confidence that the solution is correct. But it’s still a good idea to check because you’ll catch most of your mistakes.

    CC licensed content, Shared previously
    • Mathematics for Modeling. Authored by: Mary Parker and Hunter Ellinger. License: CC BY: Attribution

    27.2: B1.02- Section 1 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?