Skip to main content

# 5.5: Line Integrals (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

1. True or False? Line integral $$\displaystyle\int _C f(x,y)\,ds$$ is equal to a definite integral if $$C$$ is a smooth curve defined on $$[a,b]$$ and if function $$f$$ is continuous on some region that contains curve $$C$$.

Answer
True

2. True or False? Vector functions $$\vecs r_1=t\,\hat{\mathbf i}+t^2\,\hat{\mathbf j}, \quad 0≤t≤1,$$ and $$\vecs r_2=(1−t)\,\hat{\mathbf i}+(1−t)^2\,\hat{\mathbf j}, \quad 0≤t≤1$$, define the same oriented curve.

3. True or False? $$\displaystyle\int _{−C}(P\,dx+Q\,dy)=\int _C(P\,dx−Q\,dy)$$

Answer
False

4. True or False? A piecewise smooth curve $$C$$ consists of a finite number of smooth curves that are joined together end to end.

5. True or False? If $$C$$ is given by $$x(t)=t,\quad y(t)=t, \quad 0≤t≤1$$, then $$\displaystyle\int _Cxy\,ds=\int ^1_0t^2\,dt.$$

Answer
False

For the following exercises, use a computer algebra system (CAS) to evaluate the line integrals over the indicated path.

6. [T] $$\displaystyle\int _C(x+y)\,ds$$

$$C:x=t,y=(1−t),z=0$$ from $$(0, 1, 0)$$ to $$(1, 0, 0)$$

7. [T] $$\displaystyle \int _C(x−y)ds$$

$$C:\vecs r(t)=4t\,\hat{\mathbf i}+3t\,\hat{\mathbf j}$$ when $$0≤t≤2$$

Answer
$$\displaystyle\int _C(x−y)\,ds=10$$

8. [T] $$\displaystyle\int _C(x^2+y^2+z^2)\,ds$$

$$C:\vecs r(t)=\sin t\,\hat{\mathbf i}+\cos t\,\hat{\mathbf j}+8t\,\hat{\mathbf k}$$ when $$0≤t≤\dfrac{π}{2}$$

9. [T] Evaluate $$\displaystyle\int _Cxy^4\,ds$$, where $$C$$ is the right half of circle $$x^2+y^2=16$$ and is traversed in the clockwise direction.

Answer
$$\displaystyle\int _Cxy^4\,ds=\frac{8192}{5}$$

10. [T] Evaluate $$\displaystyle\int _C4x^3ds$$, where C is the line segment from $$(−2,−1)$$ to $$(1, 2)$$.

For the following exercises, find the work done.

11. Find the work done by vector field $$\vecs F(x,y,z)=x\,\hat{\mathbf i}+3xy\,\hat{\mathbf j}−(x+z)\,\hat{\mathbf k}$$ on a particle moving along a line segment that goes from $$(1,4,2)$$ to $$(0,5,1)$$.

Answer
$$W=8$$ units of work

12. Find the work done by a person weighing 150 lb walking exactly one revolution up a circular, spiral staircase of radius 3 ft if the person rises 10 ft.

13. Find the work done by force field $$\vecs F(x,y,z)=−\dfrac{1}{2}x\,\hat{\mathbf i}−\dfrac{1}{2}y\,\hat{\mathbf j}+\dfrac{1}{4}\,\hat{\mathbf k}$$ on a particle as it moves along the helix $$\vecs r(t)=\cos t\,\hat{\mathbf i}+\sin t\,\hat{\mathbf j}+t\,\hat{\mathbf k}$$ from point $$(1,0,0)$$ to point $$(−1,0,3π)$$.

Answer
$$W=\frac{3π}{4}$$ units of work

14. Find the work done by vector field $$\vecs{F}(x,y)=y\,\hat{\mathbf i}+2x\,\hat{\mathbf j}$$ in moving an object along path $$C$$, which joins points $$(1, 0)$$ and $$(0, 1)$$.

15. Find the work done by force $$\vecs{F}(x,y)=2y\,\hat{\mathbf i}+3x\,\hat{\mathbf j}+(x+y)\,\hat{\mathbf k}$$ in moving an object along curve $$\vecs r(t)=\cos(t)\,\hat{\mathbf i}+\sin(t)\,\hat{\mathbf j}+16\,\hat{\mathbf k}$$, where $$0≤t≤2π$$.

Answer
$$W=π$$ units of work

16. Find the mass of a wire in the shape of a circle of radius 2 centered at (3, 4) with linear mass density $$ρ(x,y)=y^2$$.

For the following exercises, evaluate the line integrals.

17. Evaluate $$\displaystyle\int_C\vecs F·d\vecs{r}$$, where $$\vecs{F}(x,y)=−1\,\hat{\mathbf j}$$, and $$C$$ is the part of the graph of $$y=\frac{1}{2}x^3−x$$ from $$(2,2)$$ to $$(−2,−2)$$.

Answer
$$\displaystyle\int _C\vecs F·d\vecs{r}=4$$ units of work

18. Evaluate $$\displaystyle\int _γ(x^2+y^2+z^2)^{−1}ds$$, where $$γ$$ is the helix $$x=\cos t,y=\sin t,z=t,$$ with $$0≤t≤T.$$

19. Evaluate $$\displaystyle\int _Cyz\,dx+xz\,dy+xy\,dz$$ over the line segment from $$(1,1,1)$$ to $$(3,2,0).$$

Answer
$$\displaystyle\int _Cyz\,dx+xz\,dy+xy\,dz=−1$$

20. Let $$C$$ be the line segment from point (0, 1, 1) to point (2, 2, 3). Evaluate line integral $$\displaystyle\int _Cy\,ds.$$

21. [T] Use a computer algebra system to evaluate the line integral $$\displaystyle\int _Cy^2\,dx+x\,dy$$, where $$C$$ is the arc of the parabola $$x=4−y^2$$ from $$(−5, −3)$$ to $$(0, 2)$$.

Answer
$$\displaystyle\int _C(y^2)\,dx+(x)\,dy=\dfrac{245}{6}$$

22. [T] Use a computer algebra system to evaluate the line integral $$\displaystyle\int _C (x+3y^2)\,dy$$ over the path $$C$$ given by $$x=2t,y=10t,$$ where $$0≤t≤1.$$

23. [T] Use a CAS to evaluate line integral $$\displaystyle\int _C xy\,dx+y\,dy$$ over path $$C$$ given by $$x=2t,y=10t$$, where $$0≤t≤1$$.

Answer
$$\displaystyle\int _Cxy\,dx+y\,dy=\dfrac{190}{3}$$

24. Evaluate line integral $$\displaystyle\int _C(2x−y)\,dx+(x+3y)\,dy$$, where $$C$$ lies along the $$x$$-axis from $$x=0$$ to $$x=5$$.

26. [T] Use a CAS to evaluate $$\displaystyle\int _C\dfrac{y}{2x^2−y^2}\,ds$$, where $$C$$ is defined by the parametric equations $$x=t,y=t$$, for $$1≤t≤5.$$

Answer
$$\displaystyle\int _C\frac{y}{2x^2−y^2}\,ds=\sqrt{2}\ln 5$$

27. [T] Use a CAS to evaluate $$\displaystyle\int _Cxy\,ds$$, where $$C$$ is defined by the parametric equations $$x=t^2,y=4t$$, for $$0≤t≤1.$$

In the following exercises, find the work done by force field $$\vecs F$$ on an object moving along the indicated path.

28. $$\vecs{F}(x,y)=−x \,\hat{\mathbf i}−2y\,\hat{\mathbf j}$$

$$C:y=x^3$$ from $$(0, 0)$$ to $$(2, 8)$$

Answer
$$W=−66$$ units of work

29. $$\vecs{F}(x,y)=2x\,\hat{\mathbf i}+y\,\hat{\mathbf j}$$

<$$C$$: counterclockwise around the triangle with vertices $$(0, 0), (1, 0),$$ and $$(1, 1)$$

30. $$\vecs F(x,y,z)=x\,\hat{\mathbf i}+y\,\hat{\mathbf j}−5z\,\hat{\mathbf k}$$

$$C:\vecs r(t)=2\cos t\,\hat{\mathbf i}+2\sin t\,\hat{\mathbf j}+t\,\hat{\mathbf k},\; 0≤t≤2π$$

Answer
$$W=−10π^2$$ units of work

31. Let $$\vecs F$$ be vector field $$\vecs{F}(x,y)=(y^2+2xe^y+1)\,\hat{\mathbf i}+(2xy+x^2e^y+2y)\,\hat{\mathbf j}$$. Compute the work of integral $$\displaystyle\int _C\vecs F·d\vecs{r}$$, where $$C$$ is the path $$\vecs r(t)=\sin t\,\hat{\mathbf i}+\cos t\,\hat{\mathbf j},\quad 0≤t≤\dfrac{π}{2}$$.

32. Compute the work done by force $$\vecs F(x,y,z)=2x\,\hat{\mathbf i}+3y\,\hat{\mathbf j}−z\,\hat{\mathbf k}$$ along path $$\vecs r(t)=t\,\hat{\mathbf i}+t^2\,\hat{\mathbf j}+t^3\,\hat{\mathbf k}$$, where $$0≤t≤1$$.

Answer
$$W=2$$ units of work

33. Evaluate $$\displaystyle\int _C\vecs F·d\vecs{r}$$, where $$\vecs{F}(x,y)=\dfrac{1}{x+y}\,\hat{\mathbf i}+\dfrac{1}{x+y}\,\hat{\mathbf j}$$ and $$C$$ is the segment of the unit circle going counterclockwise from $$(1,0)$$ to $$(0, 1)$$.

34. Force $$\vecs F(x,y,z)=zy\,\hat{\mathbf i}+x\,\hat{\mathbf j}+z^2x\,\hat{\mathbf k}$$ acts on a particle that travels from the origin to point $$(1, 2, 3)$$. Calculate the work done if the particle travels:

1. along the path $$(0,0,0)→(1,0,0)→(1,2,0)→(1,2,3)$$ along straight-line segments joining each pair of endpoints;
2. along the straight line joining the initial and final points.
3. Is the work the same along the two paths?

Answer
a. $$W=11$$ units of work;
b. $$W=\dfrac{39}{4}=9\frac{3}{4}$$ units of work;
c. No

35. Find the work done by vector field $$\vecs F(x,y,z)=x\,\hat{\mathbf i}+3xy\,\hat{\mathbf j}−(x+z)\,\hat{\mathbf k}$$ on a particle moving along a line segment that goes from $$(1, 4, 2)$$ to $$(0, 5, 1).$$

36. How much work is required to move an object in vector field $$\vecs{F}(x,y)=y\,\hat{\mathbf i}+3x\,\hat{\mathbf j}$$ along the upper part of ellipse $$\dfrac{x^2}{4}+y^2=1$$ from $$(2, 0)$$ to $$(−2,0)$$?

Answer
$$W=2π$$ units of work

37. A vector field is given by $$\vecs{F}(x,y)=(2x+3y)\,\hat{\mathbf i}+(3x+2y)\,\hat{\mathbf j}$$. Evaluate the line integral of the field around a circle of unit radius traversed in a clockwise fashion.

38. Evaluate the line integral of scalar function $$xy$$ along parabolic path $$y=x^2$$ connecting the origin to point $$(1, 1)$$.

Answer
$$\displaystyle\int _C f\,ds=\dfrac{25\sqrt{5}+1}{120}$$

39. Find $$\displaystyle\int _Cy^2\,dx+(xy−x^2)\,dy$$ along $$C: y=3x$$ from $$(0, 0)$$ to $$(1, 3).$$

40. Find $$\displaystyle\int _Cy^2\,dx+(xy−x^2)\,dy$$ along $$C: y^2=9x$$ from $$(0, 0)$$ to $$(1, 3).$$

Answer
$$\displaystyle\int _Cy^2\,dx+(xy−x^2)\,dy=6.15$$

For the following exercises, use a CAS to evaluate the given line integrals.

41. [T] Evaluate $$\vecs F(x,y,z)=x^2z\,\hat{\mathbf i}+6y\,\hat{\mathbf j}+yz^2\,\hat{\mathbf k}$$, where $$C$$ is represented by $$\vecs r(t)=t\,\hat{\mathbf i}+t^2\,\hat{\mathbf j}+\ln t \,\hat{\mathbf k},1≤t≤3$$.

42. [T] Evaluate line integral $$\displaystyle\int _γxe^y\,ds$$ where, $$γ$$ is the arc of curve $$x=e^y$$ from $$(1,0)$$ to $$(e,1)$$.

Answer
$$\displaystyle\int _γxe^y\,ds≈7.157$$

43. [T] Evaluate the integral $$\displaystyle\int _γxy^2\,ds$$, where $$γ$$ is a triangle with vertices $$(0, 1, 2), (1, 0, 3)$$, and $$(0,−1,0)$$.

44. [T] Evaluate line integral $$\displaystyle\int _γ(y^2−xy)\,dx$$, where $$γ$$ is curve $$y=\ln x$$ from $$(1, 0)$$ toward $$(e,1)$$.

Answer
$$\displaystyle\int _γ(y^2−xy)\,dx≈−1.379$$

45. [T] Evaluate line integral $$\displaystyle\int_γ xy^4\,ds$$, where $$γ$$ is the right half of circle $$x^2+y^2=16$$.

46. [T] Evaluate $$\int C \vecs F⋅d\vecs{r},\int C \vecs F·d\vecs{r},$$ where $$\vecs F(x,y,z)=x^2y\,\mathbf{\hat i}+(x−z)\,\mathbf{\hat j}+xyz\,\mathbf{\hat k}$$ and

$$C: \vecs r(t)=t\,\mathbf{\hat i}+t^2\,\mathbf{\hat j}+2\,\mathbf{\hat k},0≤t≤1$$.

Answer
$$\displaystyle\int _C \vecs F⋅d\vecs{r}≈−1.133$$ units of work

47. Evaluate $$\displaystyle\int _C \vecs F⋅d\vecs{r}$$, where $$\vecs{F}(x,y)=2x\sin y\,\mathbf{\hat i}+(x^2\cos y−3y^2)\,\mathbf{\hat j}$$ and

$$C$$ is any path from $$(−1,0)$$ to $$(5, 1)$$.

48. Find the line integral of $$\vecs F(x,y,z)=12x^2\,\mathbf{\hat i}−5xy\,\mathbf{\hat j}+xz\,\mathbf{\hat k}$$ over path $$C$$ defined by $$y=x^2, z=x^3$$ from point $$(0, 0, 0)$$ to point $$(2, 4, 8)$$.

Answer
$$\displaystyle\int _C \vecs F⋅d\vecs{r}≈22.857$$ units of work

49. Find the line integral of $$\displaystyle\int _C(1+x^2y)\,ds$$, where $$C$$ is ellipse $$\vecs r(t)=2\cos t\,\mathbf{\hat i}+3\sin t\,\mathbf{\hat j}$$ from $$0≤t≤π.$$

For the following exercises, find the flux.

50. Compute the flux of $$\vecs{F}=x^2\,\mathbf{\hat i}+y\,\mathbf{\hat j}$$ across a line segment from $$(0, 0)$$ to $$(1, 2).$$

Answer
$$\text{flux}=−\frac{1}{3}$$

51. Let $$\vecs{F}=5\,\mathbf{\hat i}$$ and let $$C$$ be curve $$y=0,$$ with $$0≤x≤4$$. Find the flux across $$C$$.

52. Let $$\vecs{F}=5\,\mathbf{\hat j}$$ and let $$C$$ be curve $$y=0,$$ with $$0≤x≤4$$. Find the flux across $$C$$.

Answer
$$\text{flux}=-20$$

53. Let $$\vecs{F}=−y\,\mathbf{\hat i}+x\,\mathbf{\hat j}$$ and let $$C: \vecs r(t)=\cos t\,\mathbf{\hat i}+\sin t\,\mathbf{\hat j}$$ for $$0≤t≤2π$$. Calculate the flux across $$C$$.

54. Let $$\vecs{F}=(x^2+y^3)\,\mathbf{\hat i}+(2xy)\,\mathbf{\hat j}$$. Calculate flux $$\vecs F$$ orientated counterclockwise across the curve $$C: x^2+y^2=9.$$

Answer
$$\text{flux}=0$$

Complete the rest of the exercises as stated.

55. Find the line integral of $$\displaystyle\int _C z^2\,dx+y\,dy+2y\,dz,$$ where $$C$$ consists of two parts: $$C_1$$ and $$C_2.$$ $$C_1$$ is the intersection of cylinder $$x^2+y^2=16$$ and plane $$z=3$$ from $$(0, 4, 3)$$ to $$(−4,0,3).$$ $$C_2$$ is a line segment from $$(−4,0,3)$$ to $$(0, 1, 5)$$.

56. A spring is made of a thin wire twisted into the shape of a circular helix $$x=2\cos t,\;y=2\sin t,\;z=t.$$ Find the mass of two turns of the spring if the wire has a constant mass density of $$ρ$$ grams per cm.

Answer
$$m=4πρ\sqrt{5}$$ grams

57. A thin wire is bent into the shape of a semicircle of radius $$a$$. If the linear mass density at point $$P$$ is directly proportional to its distance from the line through the endpoints, find the mass of the wire.

58. An object moves in force field $$\vecs F(x,y,z)=y^2\,\mathbf{\hat i}+2(x+1)y\,\mathbf{\hat j}$$ counterclockwise from point $$(2, 0)$$ along elliptical path $$x^2+4y^2=4$$ to $$(−2,0)$$, and back to point $$(2, 0)$$ along the $$x$$-axis. How much work is done by the force field on the object?

Answer
$$W=0$$ units of work

59. Find the work done when an object moves in force field $$\vecs F(x,y,z)=2x\,\mathbf{\hat i}−(x+z)\,\mathbf{\hat j}+(y−x)\,\mathbf{\hat k}$$ along the path given by $$\vecs r(t)=t^2\,\mathbf{\hat i}+(t^2−t)\,\mathbf{\hat j}+3\,\mathbf{\hat k}, \; 0≤t≤1.$$

60. If an inverse force field $$\vecs F$$ is given by $$\vecs F(x,y,z)=\dfrac{k}{‖r‖^3}r$$, where $$k$$ is a constant, find the work done by $$\vecs F$$ as its point of application moves along the $$x$$-axis from $$A(1,0,0)$$ to $$B(2,0,0)$$.

Answer
$$W=\frac{k}{2}$$ units of work

61. David and Sandra plan to evaluate line integral $$\displaystyle\int _C\vecs F·d\vecs{r}$$ along a path in the $$xy$$-plane from $$(0, 0)$$ to $$(1, 1)$$. The force field is $$\vecs{F}(x,y)=(x+2y)\,\mathbf{\hat i}+(−x+y^2)\,\mathbf{\hat j}$$. David chooses the path that runs along the $$x$$-axis from $$(0, 0)$$ to $$(1, 0)$$ and then runs along the vertical line $$x=1$$ from $$(1, 0)$$ to the final point $$(1, 1)$$. Sandra chooses the direct path along the diagonal line $$y=x$$ from $$(0, 0)$$ to $$(1, 1)$$. Whose line integral is larger and by how much?

## Contributors

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

This page titled 5.5: Line Integrals (Exercises) is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by OpenStax.

• Was this article helpful?