Skip to main content
Mathematics LibreTexts

7.4E: The Unit Step Function (Exercises)

  • Page ID
    43329
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q7.4.1

    In Exercises 7.4.1-7.4.6 find the Laplace transform. Then express the given function \(f\) in terms of unit step functions and find \({\cal L}(f)\). Graph \(f\) for Exercises 7.4.3 and 7.4.4.

    1. \(f(t)=\left\{\begin{array}{cl} {1,}&{0 \le t<4,}\\ {t,} & {t\ge4.} \end{array}\right.\)

    2. \(f(t)=\left\{\begin{array}{cl} t,&0 \le t<1,\\[4pt] 1,& t\ge1.\end{array}\right.\)

    3. \(f(t)=\left\{\begin{array}{cl} 2t-1,& 0\le t<2,\\[4pt] t,&t\ge2.\end{array}\right.\)

    4. \(f(t)=\left\{\begin{array}{cl}1, &0\le t<1,\\[4pt] t+2,&t\ge1.\end{array}\right.\)

    5. \(f(t)=\left\{\begin{array}{cl} t-1,& 0\le t<2,\\[4pt] 4,&t\ge2.\end{array}\right.\)

    6. \(f(t)=\left\{\begin{array}{cl} t^2,& 0\le t<1,\\[4pt] 0,&t\ge1.\end{array}\right.\)

    Q7.4.2

    In Exercises 7.4.7-7.4.18 express the given function \(f\) in terms of unit step functions and find \(\cal{L} (f)\). Graph \(f\) for Exercises 7.4.15-7.4.18.

    7. \(f(t)=\left\{\begin{array}{cl} 0, &0\le t<2,\\[4pt] t^2+3t,&t\ge2.\end{array}\right.\)

    8. \(f(t)=\left\{\begin{array}{cl} t^2+2, &0\le t<1,\\[4pt] t,&t\ge1.\end{array}\right.\)

    9. \(f(t)=\left\{\begin{array}{cl} te^t,& 0\le t <1,\\[4pt] e^t,&t\ge1.\end{array}\right.\)

    10. \(f(t)=\left\{\begin{array}{cl} e^{\phantom{2}-t}, &0\le t<1,\\[4pt] e^{-2t},&t\ge1.\end{array}\right.\)

    11. \(f(t)=\left\{\begin{array}{cl} -t,&0 \le t<2,\\[4pt] t-4,&2\le t<3,\\[4pt] 1,&t\ge3. \end{array}\right.\)

    12. \(f(t)=\left\{\begin{array}{cl} 0,&0 \le t<1,\\[4pt] t,&1\le t<2,\\[4pt] 0,&t\ge2.\end{array}\right.\)

    13. \(f(t)=\left\{\begin{array}{cl} t,&0 \le t<1,\\[4pt] t^2,&1\le t<2,\\[4pt] 0,&t\ge2. \end{array}\right.\)

    14. \(f(t)=\left\{\begin{array}{cl} t,&0\le t<1,\\[4pt] 2-t,&1\le t<2,\\[4pt] 6,&t > 2. \end{array}\right.\)

    15. \(f(t)=\left\{\begin{array}{cl} {\sin t,}&{0\leq t<\frac{\pi }{2}}\\{2\sin t,}&{\frac{\pi }{2}\leq t<\pi }\\{\cos t,}&{t\geq \pi } \end{array} \right.\)

    16. \(f(t)=\left\{\begin{array}{cl}\phantom{-} 2,&0\le t<1,\\[4pt]-2t+2,&1\le t<3,\\[4pt]\phantom{-}3t,&t\ge 3.\end{array}\right.\)

    17. \(f(t)=\left\{\begin{array}{cl}3,&0\le t<2,\\[4pt]3t+2,&2\le t<4,\\[4pt]4t,&t\ge 4.\end{array}\right.\)

    18. \(f(t)=\left\{\begin{array}{ll}(t+1)^2,&0\le t<1, \\[4pt](t+2)^2,&t\ge1.\end{array}\right.\)

    Q7.4.3

    In Exercises 7.4.19-7.4.28  express the inverse transforms in terms of step functions, and then find distinct formulas the for inverse transforms on the appropriate intervals, as in Example 7.4.7. Graph the inverse transform for Exercises 7.4.21, 7.4.22, and 7.4.25.

    19. \(H(s)={e^{-2s}\over s-2}\)

    20. \(H(s)={e^{-s}\over s(s+1)}\)

    21. \(H(s)={e^{-s}\over s^3}+ {e^{-2s}\over s^2}\)

    22. \(H(s)=\left({2\over s}+{1\over s^2}\right) +e^{-s}\left({3\over s}-{1\over s^2}\right)+e^{-3s}\left({1\over s}+{1\over s^2}\right)\)

    23. \(H(s)=\left({5\over s}-{1\over s^2}\right) +e^{-3s}\left({6\over s}+{7\over s^2}\right)+{3e^{-6s}\over s^3}\)

    24. \(H(s)={e^{-\pi s} (1-2s)\over s^2+4s+5}\)

    25. \(H(s)=\left({1\over s}-{s\over s^2+1}\right)+e^{-{\pi\over 2}s}\left({3s-1\over s^2+1}\right)\)

    26. \(H(s)= e^{-2s}\left[{3(s-3)\over(s+1)(s-2)}-{s+1\over(s-1)(s-2)}\right]\)

    27. \(H(s)={1\over s}+{1\over s^2}+e^{-s}\left({3\over s}+{2\over s^2}\right) +e^{-3s}\left({4\over s}+{3\over s^2}\right)\)

    28. \(H(s)={1\over s}-{2\over s^3}+e^{-2s}\left({3\over s}-{1\over s^3}\right) +{e^{-4s}\over s^2}\)

    Q7.4.4

    29. Find \({\cal L}\left(u(t-\tau)\right)\).

     


    This page titled 7.4E: The Unit Step Function (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.