8.5E: Exercises for Section 8.5
- Last updated
- Jul 27, 2024
- Save as PDF
- Page ID
- 160318
- Gilbert Strang & Edwin “Jed” Herman
- OpenStax
( \newcommand{\kernel}{\mathrm{null}\,}\)
Use a table of integrals to evaluate the following integrals.
1) ∫40x√1+2xdx
2) ∫x+3x2+2x+2dx
- Answer
- ∫x+3x2+2x+2dx=12ln|x2+2x+2|+2arctan(x+1)+C
3) ∫x3√1+2x2dx
4) ∫1√x2+6xdx
- Answer
- ∫1√x2+6xdx=cosh−1(x+33)+C
5) ∫xx+1dx
6) ∫x⋅2x2dx
- Answer
- ∫x⋅2x2dx=2x2−1ln2+C
7) ∫14x2+25dx
8) ∫dy√4−y2
- Answer
- ∫dy√4−y2=arcsin(y2)+C
9) ∫sin3(2x)cos(2x)dx
10) ∫csc(2w)cot(2w)dw
- Answer
- ∫csc(2w)cot(2w)dw=−12csc(2w)+C
11) ∫2ydy
12) ∫103x√x2+8dx
- Answer
- ∫103x√x2+8dx=9−6√2
13) ∫1/4−1/4sec2(πx)tan(πx)dx
14) ∫π/20tan2(x2)dx
- Answer
- ∫π/20tan2(x2)dx=2−π2
15) ∫cos3xdx
16) ∫tan5(3x)dx
- Answer
- ∫tan5(3x)dx=112tan4(3x)−16tan2(3x)+13ln|sec3x|+C
17) ∫sin2ycos3ydy
Use a CAS to evaluate the following integrals. Tables can also be used to verify the answers.
18) [T] ∫dw1+sec(w2)
- Answer
- ∫dw1+sec(w2)=2cot(w2)−2csc(w2)+w+C
19) [T] ∫dw1−cos(7w)
20) [T] ∫t0dt4cost+3sint
- Answer
- ∫t0dt4cost+3sint=15ln|2(5+4sint−3cost)4cost+3sint|
21) [T] ∫√x2−93xdx
22) [T] ∫dxx1/2+x1/3
- Answer
- ∫dxx1/2+x1/3=6x1/6−3x1/3+2√x−6ln[1+x1/6]+C
23) [T] ∫dxx√x−1
24) [T] ∫x3sinxdx
- Answer
- ∫x3sinxdx=−x3cosx+3x2sinx+6xcosx−6sinx+C
25) [T] ∫x√x4−9dx
26) [T] ∫x1+e−x2dx
- Answer
- ∫x1+e−x2dx=12(x2+ln|1+e−x2|)+C
27) [T] ∫√3−5x2xdx
28) [T] ∫dxx√x−1
- Answer
- ∫dxx√x−1=2arctan(√x−1)+C
29) [T] ∫excos−1(ex)dx
Use a calculator or CAS to evaluate the following integrals.
30) [T] ∫π/40cos2xdx
- Answer
- ∫π/40cos2xdx=0.5=12
31) [T] ∫10x⋅e−x2dx
32) [T] ∫802x√x2+36dx
- Answer
- ∫802x√x2+36dx=8.0
33) [T] ∫2/√3014+9x2dx
34) [T] ∫dxx2+4x+13
- Answer
- ∫dxx2+4x+13=13arctan(13(x+2))+C
35) [T] ∫dx1+sinx
Use tables to evaluate the integrals. You may need to complete the square or change variables to put the integral into a form given in the table.
36) ∫dxx2+2x+10
- Answer
- ∫dxx2+2x+10=13arctan(x+13)+C
37) ∫dx√x2−6x
38) ∫ex√e2x−4dx
- Answer
- ∫ex√e2x−4dx=ln(ex+√4+e2x)+C
39) ∫cosxsin2x+2sinxdx
40) ∫arctan(x3)x4dx
- Answer
- ∫arctan(x3)x4dx=lnx−16ln(x6+1)−arctan(x3)3x3+C
41) ∫ln|x|arcsin(ln|x|)xdx
Use tables to perform the integration.
42) ∫dx√x2+16
- Answer
- ∫dx√x2+16=ln|x|+√16+x2∣+C
43) ∫3x2x+7dx
44) ∫dx1−cos4x
- Answer
- ∫dx1−cos4x=−14cot2x+C
45) ∫dx√4x+1
46) Find the area bounded by y(4+25x2)=5,x=0,y=0, and x=4. Use a table of integrals or a CAS.
- Answer
- 12arctan10 units²
47) The region bounded between the curve y=1√1+cosx,0.3≤x≤1.1, and the x-axis is revolved about the x-axis to generate a solid. Use a table of integrals to find the volume of the solid generated. (Round the answer to two decimal places.)
48) Use substitution and a table of integrals to find the area of the surface generated by revolving the curve y=ex,0≤x≤3, about the x-axis. (Round the answer to two decimal places.)
- Answer
- 1276.14 units²
49) [T] Use an integral table and a calculator to find the area of the surface generated by revolving the curve y=x22,0≤x≤1, about the x-axis. (Round the answer to two decimal places.)
50) [T] Use a CAS or tables to find the area of the surface generated by revolving the curve y=cosx,0≤x≤π2, about the x-axis. (Round the answer to two decimal places.)
- Answer
- 7.21 units²
51) Find the length of the curve y=x24 over [0,8].
52) Find the length of the curve y=ex over [0,ln(2)].
- Answer
- (√5−√2+ln|2+2√21+√5|) units
53) Find the area of the surface formed by revolving the graph of y=2√x over the interval [0,9] about the x-axis.
54) Find the average value of the function f(x)=1x2+1 over the interval [−3,3].
- Answer
- 13arctan(3)≈0.416
55) Approximate the arc length of the curve y=tanπx over the interval [0,14]. (Round the answer to three decimal places.)
Contributors
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.