Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

8.5E: Exercises for Section 8.5

  • Gilbert Strang & Edwin “Jed” Herman
  • OpenStax

( \newcommand{\kernel}{\mathrm{null}\,}\)

Use a table of integrals to evaluate the following integrals.

1) 40x1+2xdx

2) x+3x2+2x+2dx

Answer
x+3x2+2x+2dx=12ln|x2+2x+2|+2arctan(x+1)+C

3) x31+2x2dx

4) 1x2+6xdx

Answer
1x2+6xdx=cosh1(x+33)+C

5) xx+1dx

6) x2x2dx

Answer
x2x2dx=2x21ln2+C

7) 14x2+25dx

8) dy4y2

Answer
dy4y2=arcsin(y2)+C

9) sin3(2x)cos(2x)dx

10) csc(2w)cot(2w)dw

Answer
csc(2w)cot(2w)dw=12csc(2w)+C

11) 2ydy

12) 103xx2+8dx

Answer
103xx2+8dx=962

13) 1/41/4sec2(πx)tan(πx)dx

14) π/20tan2(x2)dx

Answer
π/20tan2(x2)dx=2π2

15) cos3xdx

16) tan5(3x)dx

Answer
tan5(3x)dx=112tan4(3x)16tan2(3x)+13ln|sec3x|+C

17) sin2ycos3ydy

Use a CAS to evaluate the following integrals. Tables can also be used to verify the answers.

18) [T] dw1+sec(w2)

Answer
dw1+sec(w2)=2cot(w2)2csc(w2)+w+C

19) [T] dw1cos(7w)

20) [T] t0dt4cost+3sint

Answer
t0dt4cost+3sint=15ln|2(5+4sint3cost)4cost+3sint|

21) [T] x293xdx

22) [T] dxx1/2+x1/3

Answer
dxx1/2+x1/3=6x1/63x1/3+2x6ln[1+x1/6]+C

23) [T] dxxx1

24) [T] x3sinxdx

Answer
x3sinxdx=x3cosx+3x2sinx+6xcosx6sinx+C

25) [T] xx49dx

26) [T] x1+ex2dx

Answer
x1+ex2dx=12(x2+ln|1+ex2|)+C

27) [T] 35x2xdx

28) [T] dxxx1

Answer
dxxx1=2arctan(x1)+C

29) [T] excos1(ex)dx

Use a calculator or CAS to evaluate the following integrals.

30) [T] π/40cos2xdx

Answer
π/40cos2xdx=0.5=12

31) [T] 10xex2dx

32) [T] 802xx2+36dx

Answer
802xx2+36dx=8.0

33) [T] 2/3014+9x2dx

34) [T] dxx2+4x+13

Answer
dxx2+4x+13=13arctan(13(x+2))+C

35) [T] dx1+sinx

Use tables to evaluate the integrals. You may need to complete the square or change variables to put the integral into a form given in the table.

36) dxx2+2x+10

Answer
dxx2+2x+10=13arctan(x+13)+C

37) dxx26x

38) exe2x4dx

Answer
exe2x4dx=ln(ex+4+e2x)+C

39) cosxsin2x+2sinxdx

40) arctan(x3)x4dx

Answer
arctan(x3)x4dx=lnx16ln(x6+1)arctan(x3)3x3+C

41) ln|x|arcsin(ln|x|)xdx

Use tables to perform the integration.

42) dxx2+16

Answer
dxx2+16=ln|x|+16+x2+C

43) 3x2x+7dx

44) dx1cos4x

Answer
dx1cos4x=14cot2x+C

45) dx4x+1

46) Find the area bounded by y(4+25x2)=5,x=0,y=0, and x=4. Use a table of integrals or a CAS.

Answer
12arctan10 units²

47) The region bounded between the curve y=11+cosx,0.3x1.1, and the x-axis is revolved about the x-axis to generate a solid. Use a table of integrals to find the volume of the solid generated. (Round the answer to two decimal places.)

48) Use substitution and a table of integrals to find the area of the surface generated by revolving the curve y=ex,0x3, about the x-axis. (Round the answer to two decimal places.)

Answer
1276.14 units²

49) [T] Use an integral table and a calculator to find the area of the surface generated by revolving the curve y=x22,0x1, about the x-axis. (Round the answer to two decimal places.)

50) [T] Use a CAS or tables to find the area of the surface generated by revolving the curve y=cosx,0xπ2, about the x-axis. (Round the answer to two decimal places.)

Answer
7.21 units²

51) Find the length of the curve y=x24 over [0,8].

52) Find the length of the curve y=ex over [0,ln(2)].

Answer
(52+ln|2+221+5|) units

53) Find the area of the surface formed by revolving the graph of y=2x over the interval [0,9] about the x-axis.

54) Find the average value of the function f(x)=1x2+1 over the interval [3,3].

Answer
13arctan(3)0.416

55) Approximate the arc length of the curve y=tanπx over the interval [0,14]. (Round the answer to three decimal places.)

Contributors

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.


This page titled 8.5E: Exercises for Section 8.5 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Gilbert Strang & Edwin “Jed” Herman (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?