Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.4E: The Unit Step Function (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Q7.4.1

In Exercises 7.4.1-7.4.6 find the Laplace transform. Then express the given function f in terms of unit step functions and find L(f). Graph f for Exercises 7.4.3 and 7.4.4.

1. f(t)={1,0t<4,t,t4.

2. f(t)={t,0t<1,1,t1.

3. f(t)={2t1,0t<2,t,t2.

4. f(t)={1,0t<1,t+2,t1.

5. f(t)={t1,0t<2,4,t2.

6. f(t)={t2,0t<1,0,t1.

Q7.4.2

In Exercises 7.4.7-7.4.18 express the given function f in terms of unit step functions and find L(f). Graph f for Exercises 7.4.15-7.4.18.

7. f(t)={0,0t<2,t2+3t,t2.

8. f(t)={t2+2,0t<1,t,t1.

9. f(t)={tet,0t<1,et,t1.

10. f(t)={e2t,0t<1,e2t,t1.

11. f(t)={t,0t<2,t4,2t<3,1,t3.

12. f(t)={0,0t<1,t,1t<2,0,t2.

13. f(t)={t,0t<1,t2,1t<2,0,t2.

14. f(t)={t,0t<1,2t,1t<2,6,t>2.

15. f(t)={sint,0t<π22sint,π2t<πcost,tπ

16. f(t)={2,0t<1,2t+2,1t<3,3t,t3.

17. f(t)={3,0t<2,3t+2,2t<4,4t,t4.

18. f(t)={(t+1)2,0t<1,(t+2)2,t1.

Q7.4.3

In Exercises 7.4.19-7.4.28  express the inverse transforms in terms of step functions, and then find distinct formulas the for inverse transforms on the appropriate intervals, as in Example 7.4.7. Graph the inverse transform for Exercises 7.4.21, 7.4.22, and 7.4.25.

19. H(s)=e2ss2

20. H(s)=ess(s+1)

21. H(s)=ess3+e2ss2

22. H(s)=(2s+1s2)+es(3s1s2)+e3s(1s+1s2)

23. H(s)=(5s1s2)+e3s(6s+7s2)+3e6ss3

24. H(s)=eπs(12s)s2+4s+5

25. H(s)=(1sss2+1)+eπ2s(3s1s2+1)

26. H(s)=e2s[3(s3)(s+1)(s2)s+1(s1)(s2)]

27. H(s)=1s+1s2+es(3s+2s2)+e3s(4s+3s2)

28. H(s)=1s2s3+e2s(3s1s3)+e4ss2

Q7.4.4

29. Find L(u(tτ)).

 


This page titled 7.4E: The Unit Step Function (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Zoya Kravets.

Support Center

How can we help?