7.4E: The Unit Step Function (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Q7.4.1
In Exercises 7.4.1-7.4.6 find the Laplace transform. Then express the given function f in terms of unit step functions and find L(f). Graph f for Exercises 7.4.3 and 7.4.4.
1. f(t)={1,0≤t<4,t,t≥4.
2. f(t)={t,0≤t<1,1,t≥1.
3. f(t)={2t−1,0≤t<2,t,t≥2.
4. f(t)={1,0≤t<1,t+2,t≥1.
5. f(t)={t−1,0≤t<2,4,t≥2.
6. f(t)={t2,0≤t<1,0,t≥1.
Q7.4.2
In Exercises 7.4.7-7.4.18 express the given function f in terms of unit step functions and find L(f). Graph f for Exercises 7.4.15-7.4.18.
7. f(t)={0,0≤t<2,t2+3t,t≥2.
8. f(t)={t2+2,0≤t<1,t,t≥1.
9. f(t)={tet,0≤t<1,et,t≥1.
10. f(t)={e2−t,0≤t<1,e−2t,t≥1.
11. f(t)={−t,0≤t<2,t−4,2≤t<3,1,t≥3.
12. f(t)={0,0≤t<1,t,1≤t<2,0,t≥2.
13. f(t)={t,0≤t<1,t2,1≤t<2,0,t≥2.
14. f(t)={t,0≤t<1,2−t,1≤t<2,6,t>2.
15. f(t)={sint,0≤t<π22sint,π2≤t<πcost,t≥π
16. f(t)={−2,0≤t<1,−2t+2,1≤t<3,−3t,t≥3.
17. f(t)={3,0≤t<2,3t+2,2≤t<4,4t,t≥4.
18. f(t)={(t+1)2,0≤t<1,(t+2)2,t≥1.
Q7.4.3
In Exercises 7.4.19-7.4.28 express the inverse transforms in terms of step functions, and then find distinct formulas the for inverse transforms on the appropriate intervals, as in Example 7.4.7. Graph the inverse transform for Exercises 7.4.21, 7.4.22, and 7.4.25.
19. H(s)=e−2ss−2
20. H(s)=e−ss(s+1)
21. H(s)=e−ss3+e−2ss2
22. H(s)=(2s+1s2)+e−s(3s−1s2)+e−3s(1s+1s2)
23. H(s)=(5s−1s2)+e−3s(6s+7s2)+3e−6ss3
24. H(s)=e−πs(1−2s)s2+4s+5
25. H(s)=(1s−ss2+1)+e−π2s(3s−1s2+1)
26. H(s)=e−2s[3(s−3)(s+1)(s−2)−s+1(s−1)(s−2)]
27. H(s)=1s+1s2+e−s(3s+2s2)+e−3s(4s+3s2)
28. H(s)=1s−2s3+e−2s(3s−1s3)+e−4ss2
Q7.4.4
29. Find L(u(t−τ)).